Modulhandbuch

für den Bachelor-Studiengang

B.Sc.
Biomedizinische Wissenschaften (BWB)

 erstellt im Januar 2019
von der Fakultät Angewandte Chemie
Inhalt

1. Vorbemerkungen .. 4
2. Einführung ... 5
2.1 Übersicht über das Studium ... 5
2.2 European Credit Transfer and Accumulation System (ECTS) ... 5
3. Übersicht über die Module im Studiengang .. 7
3.1 Mathematische / Naturwissenschaftliche Grundlagen: .. 7
3.2 Fachspezifische Biowissenschaftliche Grundlagen ... 7
3.3 Fachspezifische Biowissenschaftliche Vertiefung incl. Zweitfach .. 7
3.4 Mobilitätsfenster .. 8
3.5 Fortgeschrittene Themen .. 8
3.6 Bachelorarbeit .. 8
4. Vergabe von Noten – Qualität .. 9
4.1 Relative ECTS Noten .. 9
5. Hinweise zur Beschreibung von Modulen .. 10
6. Modulbeschreibungen .. 12
6.1 BWB1 – Mathematik .. 12
6.2 BWB2 – Physik für Biomed. Wiss. .. 14
6.3 BWB3 – Allgemeine und Analytische Chemie I .. 16
6.4 BWB4 – Grundlagen der Materialwissenschaften .. 18
6.5 BWB5 – Humanbiologie ... 21
6.6 BWB6 Unternehmensfunktionen der chemisch-pharmazeutischen Industrie 23
6.7 BWB7 – Medizinische Grundlagen ... 25
6.8 BWB8 – Labor chemische Grundlagen der Biomedizin .. 27
6.9 BWB9 – Organische Chemie I .. 29
6.10 BWB10 – Biophysikalische Chemie .. 31
6.11 BWB11 Labor Biophysikalische Chemie ... 34
6.12 BWB12 – Betriebswirtschaftslehre und Projektmanagement .. 36
6.13 BWB13 – Organische Chemie II für Biomed. Wiss. .. 38
6.14 BWB14 – Labor Organische Chemie für Biomedizinische Wissenschaften 40
6.15 BWB15 – Biochemie .. 42
6.16 BWB16 – Mikrobiologie .. 45
6.17 BWB17 – Labor Mikrobiologie .. 47
6.18 BWB18 – Grundlagen der Instrumentellen Analytik .. 49
6.19 BWB19 – Zellkulturtechnik ... 52
6.20 BWB20 – Chromatographie und Chemometrie ... 54
6.21 BWB21 – Polymere ..57
6.22 BWB22 – Biomaterialien ..59
6.23 BWB23 – Labor Zellkultur ..62
6.24 BWB24 – Wahlpflichtmodule ...64
 6.24.1 BWB24.1 – Wahlpflichtmodul 1 ..64
 6.24.2 BWB24.2 – Wahlpflichtmodul 2 ..66
6.25 BWB25 Mobilitätsfenster 1 ..69
 6.25.1 BWB25.1 - Praktisches Studiensemester ...69
 6.25.2 BWB25.2 - Internationales Studiensemester ...71
 6.25.3 BWB25.3. Projekt Unternehmensgründung ...72
6.26 BWB26 – Fortgeschrittene Themen der Biomedizin ...75
6.27 BWB27-Bioanalytik ...77
6.28 BWB28- Labor Bioanalytik ..79
6.29 BWB29-Diagnostik und Pharmakologie / Diagnostics and Pharmacology Technology ...81
6.30 BWB30-Immunologie und Tissue Engineering ..83
6.31 BWB31 – Soft Skills und Eventmanagement ..86
6.32 BWB32 – Praxisphase (Mobilitätsfenster 2) ...88
6.33 BWB33 Bachelorthesis und Seminar ..91
1. Vorbemerkungen

Dieses Modulhandbuch soll den Studierenden und den Lehrenden die Inhalte des Curriculums des Studiengangs Bachelor of Science Biomedizinische Wissenschaften detailliert und umfassend darstellen.

Die jeweiligen Modulbeschreibungen in diesem Handbuch stellen die Modulziele und die angestrebten Lernergebnisse sowie die konkreten Inhalte der enthaltenen Lehrveranstaltungen vor. Darüber hinaus liefern sie alle zum erfolgreichen Studienablauf notwendigen Informationen. Sie sind auch Bestandteil des Diploma-Supplements des Bachelorgrades.

Sollten Sie Fragen haben, die mehrere Module oder den Studienverlauf betreffen, so wenden Sie sich bitte an das Dekanat der Fakultät Angewandte Chemie.

Sollten Sie Fragen zu einem speziellen Modul haben, so wenden Sie sich bitte direkt an den entsprechenden Modulkorordinator. Eine Auflistung der Modulkordinatoren finden Sie im Internet, wo auch das Modulhandbuch zu finden ist.

Sollten Sie Fragen zu einer speziellen Veranstaltung haben, so wenden Sie sich bitte direkt an den jeweiligen Dozenten oder die jeweilige Dozentin.
2. Einführung

2.1 Übersicht über das Studium
Das Curriculum des Bachelor-Studienganges Biomedizinische Wissenschaften umfasst eine Studiendauer von 7 Semestern.

Im 5. bis 7. Semester werden die bis dahin erzielten Lerninhalte ausgebaut und praktisch umgesetzt.

Das 5. Semester dient als Mobilitätsfenster. Es ermöglicht dem Studierenden erste unmittelbar berufsbezogene Erfahrungen im In- und Ausland zu sammeln.

Das 7. Semester dient als Praxisphase und beinhaltet ebenfalls das Erstellen der Abschlussarbeit (Bachelor-Thesis) und damit dokumentiert die Kompetenz des selbstständigen wissenschaftlichen Arbeitens.

Wichtige Lernziele im Studium sind unter anderem

- die Kenntnis grundlegender und für das Studium relevante vertiefte Gesetzmäßigkeiten und Methoden der Chemie, Materialwissenschaften, Physik und Mathematik, die für das Verständnis biowissenschaftliche Zusammenhänge, Arbeitsmethoden und Anwendungen erforderlich sind
- die Kenntnis biologischer und medizinischer Grundlagen und der Erwerb entsprechender Methoden- und fachübergreifender Anwendungskompetenz
- die Befähigungen zu selbstständigem wissenschaftlichem Arbeiten und Lösungen von fachrelevanten Aufgaben und Herausforderungen
- die Entwicklung des konzeptionellen und analytischen, sowie unternehmerischen Denkens
- der Erwerb von Kommunikationskompetenz, Befähigung zur Recherche und Präsentation und die Entwicklung des Bewusstseins gesellschaftlicher Aspekte des Fachgebiets

Detaillierte Lernziele sind in den Modulbeschreibungen zu finden.

2.2 European Credit Transfer and Accumulation System (ECTS)
Gemäß den Vorgaben des Ministeriums für Wissenschaft, Forschung und Kunst BW sowie der Kultusministerkonferenz sind die Studieninhalte in Module eingeteilt. Die erbrachte Studienleistung wird mit dem „European Credit Transfer and Accumulation System“ (ECTS) erfasst. Damit Studienleistungen, die in unterschiedlichen Hochschulen – auch im Ausland – erbracht werden, besser verglichen werden können, stützt sich das ECT-System nicht auf Semesterwochenstunden (SWS), die den Lehraufwand wiedergeben, sondern auf den
Lernaufwand der Studierenden. Eine Vergleichbarkeit der Studienleistungen in Europa wird hierdurch möglich.

Beispiel zur Veranschaulichung:

<table>
<thead>
<tr>
<th>SWS*</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Arbeitsaufwand</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>30 h</td>
<td>60 h</td>
<td>90 h</td>
<td>3</td>
</tr>
</tbody>
</table>

SWS* = 1 SWS entspricht 15 h bei einem Durchschnitt von 15 Wochen pro Semester.

Gewährt werden die ECTS jedoch nur, wenn der oder die Studierende die erforderliche Prüfungsleistung auch nachweislich erbracht hat. Die Kreditpunkte werden nach dem Prinzip „Alles-oder-Nichts“ vergeben!
3. Übersicht über die Module im Studiengang

3.1 Mathematische / Naturwissenschaftliche Grundlagen:

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modul</th>
<th>Semester</th>
<th>SWS</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWB1</td>
<td>Mathematik</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB2</td>
<td>Physik für Biomed. Wiss.</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>BWB3</td>
<td>Allgemeine und Analytische Chemie I für Biomed. Wiss.</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB4</td>
<td>Grundlagen der Materialwissenschaften</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB5</td>
<td>Humanbiologie u. Grundlagen der Biomedizin</td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>BWB6</td>
<td>Unternehmensfunktionen der chemisch-pharmazeutischen Industrie</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

3.2 Fachspezifische Biowissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modul</th>
<th>Semester</th>
<th>SWS</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWB7</td>
<td>Medizinische Grundlagen</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>BWB8</td>
<td>Labore Chemische Grundlagen der Biomedizin</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB9</td>
<td>Organische Chemie I</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB10</td>
<td>Biophysikalische Chemie</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB11</td>
<td>Labor Biophysikalische Chemie</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB12</td>
<td>BWL u. Projektmanagement</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB13</td>
<td>Organische Chemie II für Biomed. Wiss.</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB14</td>
<td>Labor Organische Chemie II für Biomed. Wiss.</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB15</td>
<td>Biochemie</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB16</td>
<td>Mikrobiologie</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB17</td>
<td>Labor Mikrobiologie</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB18</td>
<td>Grundlagen der Instrumentellen Analytik</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

3.3 Fachspezifische Biowissenschaftliche Vertiefung incl. Zweitfach

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modul</th>
<th>Semester</th>
<th>SWS</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWB19</td>
<td>Zellkulturtechnik</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>BWB20</td>
<td>Chromatographie und Chemometrie</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>BWB21</td>
<td>Polymere</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB22</td>
<td>Biomaterialien</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB23</td>
<td>Labor Zellkultur</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB24.1</td>
<td>Wahlpflichtmodul 1 Grundlagen Marketing und Vertrieb</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB24.2</td>
<td>Wahlpflichtmodul 2 Sicherheit und Umwelttechnik</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
3.4 Mobilitätsfenster

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modul</th>
<th>Semester</th>
<th>SWS</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWB25.1</td>
<td>Praktisches Studiensemester</td>
<td>5</td>
<td>24 Wo.</td>
<td>30</td>
</tr>
<tr>
<td>BWB25.2</td>
<td>Internationales Studiensemester</td>
<td>5</td>
<td>24 Wo.</td>
<td>30</td>
</tr>
<tr>
<td>BWB25.3</td>
<td>Projekt Unternehmensgründung</td>
<td>5</td>
<td>24 Wo.</td>
<td>30</td>
</tr>
</tbody>
</table>

3.5 Fortgeschrittene Themen

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modul</th>
<th>Semester</th>
<th>SWS</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWB26</td>
<td>Fortgeschrittene Themen der Biomedizin</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>BWB27</td>
<td>Bioanalytik</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>BWB28</td>
<td>Labor Bioanalytik</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB29</td>
<td>Diagnostik und Pharmakologie</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BWB30</td>
<td>Immunologie und Tissue Engineering</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

3.6 Bachelorarbeit

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modul</th>
<th>Semester</th>
<th>SWS</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWB31</td>
<td>Soft Skills und Eventmanagement</td>
<td>7</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BWB32</td>
<td>Praxisphase</td>
<td>7</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>BWB33</td>
<td>Bachelor-Thesis und Seminar</td>
<td>7</td>
<td>12 (Wo.)</td>
<td>12 (B.T.) +2 (Sem.)</td>
</tr>
</tbody>
</table>
4. Vergabe von Noten – Qualität

4.1 Relative ECTS Noten

International ist es Standard, dass die 10 % besten Studierenden die Note A erhalten, unabhängig von der Note, die sie nach dem deutschen Notensystem erhalten. Dieses System soll die Leistung der Studierenden objektiver machen, da schwere und auch leichte Veranstaltungen relativiert werden.

<table>
<thead>
<tr>
<th>erfolgreiche Studierende</th>
<th>ECTS-Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>die besten 10%</td>
<td>A = hervorragend (excellent)</td>
</tr>
<tr>
<td>die nächsten 25%</td>
<td>B = sehr gut (very good)</td>
</tr>
<tr>
<td>die nächsten 30%</td>
<td>C = gut (good)</td>
</tr>
<tr>
<td>die nächsten 25%</td>
<td>D = befriedigend (satisfactory)</td>
</tr>
<tr>
<td>die nächsten 10%</td>
<td>E = ausreichend (sufficient)</td>
</tr>
<tr>
<td></td>
<td>F = nicht bestanden (fail)</td>
</tr>
</tbody>
</table>

Da für die korrekte Berechnung der relativen ECTS Noten jedoch eine größere Anzahl von Studierenden als Datenbasis benötigt werden, wird für diesen Studiengang auch weiterhin die herkömmliche deutsche Notenskala von 1 bis 5 verwendet. Die deutsche Note wird nachfolgendem Schema in die ECTS-Note (ECTS-Grade) umgeformt. (Anmerkung: aktueller Stand Februar 2011)

<table>
<thead>
<tr>
<th>ECTS-Grade</th>
<th>Deutsche Note</th>
<th>ECTS-Definition</th>
<th>Deutsche Übersetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,0 – 1,3</td>
<td>excellent</td>
<td>hervorragend</td>
</tr>
<tr>
<td>B</td>
<td>1,4 – 2,0</td>
<td>very good</td>
<td>sehr gut</td>
</tr>
<tr>
<td>C</td>
<td>2,1 – 2,7</td>
<td>good</td>
<td>gut</td>
</tr>
<tr>
<td>D</td>
<td>2,8 – 3,5</td>
<td>satisfactory</td>
<td>befriedigend</td>
</tr>
<tr>
<td>E</td>
<td>3,6 – 4,0</td>
<td>sufficient</td>
<td>ausreichend</td>
</tr>
<tr>
<td>FX/F</td>
<td>4,1 – 5,0</td>
<td>fail</td>
<td>nicht bestanden</td>
</tr>
</tbody>
</table>
5. Hinweise zur Beschreibung von Modulen

Die Beschreibung der Module soll den Studierenden eine zuverlässige Information über Studienverlauf, Inhalte, qualitative und quantitative Anforderungen und Einbindung in das Gesamtkonzept des Studienganges bzw. das Verhältnis zu anderen angebotenen Modulen bieten. Dazu sind die Module übersichtlich in tabellarischer Form dargestellt.

Im Folgenden finden Sie die einzelnen Punkte, die in der Tabelle ausgeführt werden, kurz erklärt.

Modulbezeichnung / Kürzel:

Lehrveranstaltungen:
Hier werden die am Modul beteiligten Lehrveranstaltungen einzeln aufgeführt.

Studiensemester:
Hier wird das Studiensemester angegeben, in dem der Besuch des Moduls aufgrund der Studien- und Prüfungsordnung für den Studiengang vorgeschrieben ist.

Modulverantwortliche(r):
Der Modulverantwortliche ist für die redaktionelle Bearbeitung des Moduls verantwortlich.

Dozent(in):
Die Dozenten sind für die Ausgestaltung der jeweiligen, von Ihnen selbst oder durch einen Lehrbeauftragten durchgeführten Lehrveranstaltung verantwortlich.

Sprache:
Hier ist verbindlich festgeschrieben, in welcher Sprache die Veranstaltung durchgeführt wird.

Zuordnung zum Curriculum:
Werden einzelne Module auch in anderen Studiengängen angeboten, so ist dies hier angegeben.

Lehrform/SWS:
Die Lehrform und die Semesterwochenstunden (SWS) der einzelnen, am Modul beteiligten Lehrveranstaltungen werden tabellarisch zusammengestellt. Die Abkürzungen stehen für:

Vorlesung (V)
Übungen (Ü)
Praktikum (P)
Seminar (S)

Arbeitsaufwand und Kreditpunkte:
Der Arbeitsaufwand teilt sich in Präsenz und in Eigenstudium. Für die Berechnung der Präsenz werden die SWS als Zeitstunden (h) mit den Semesterwochen (15 Wochen Lehrveranstaltungszeit, ohne Prüfungsw Duncan)

Voraussetzungen nach Prüfungsordnung:
Die erfolgreiche Teilnahme der hier aufgeführten Module ist die Eingangsvoraussetzungen zur Teilnahme am Modul.

Empfohlene Voraussetzungen:
Hier sind die vom jeweiligen Dozenten für das Verstehen der Veranstaltung vorausgesetzten Kenntnisse aufgeführt.

Modulziel / Angestrebte Lernergebnisse:
Das Modulziel umschreibt die akademischen, fachlichen und möglicherweise auch professionellen Qualifikationen, die mit diesem Modul erreicht werden sollen.

In der Darstellung der angestrebten Lernergebnisse werden die erworbenen Kenntnisse, Fertigkeiten und Kompetenzen konkretisiert. Zur Differenzierung der Art des Lernergebnisses legt die Fachdidaktik die Verwendung geeigneter Verben nahe, die den Denkprozess des Lernenden beschreiben. Zur Erleichterung der Einordnung der unterschiedlichen Erkenntnisstufen können diese mit (K1) bis (K6) benannt werden. Diese Stufen orientieren sich an folgende Einteilung

1. erinnern
2. verstehen
3. anwenden
4. analysieren
5. bewerten
6. entwickeln.

Inhalt:
Hier wird der konkrete Inhalt der einzelnen Lehrveranstaltungen (operative Ebene) dargestellt, mit dem die angestrebten Lernergebnisse erzielt werden sollen.

Studien-/Prüfungsleistungen:
Die Art der abzuleistenden Prüfung und ihr zeitlicher Umfang wird angegeben.

Medienformen:
Angabe der in der Lehrveranstaltung eingesetzten Hilfsmittel (overhead, Flip Chart, Videofilm etc.)
Angabe, wann und welche Unterlagen in der Lehrveranstaltung auf welche Weise den Studierenden zur Verfügung gestellt werden.

Literatur:
Auflistung und Angaben zur Literatur, gegebenenfalls Hinweise auf multimedial gestützte Lehr- und Lernprogramme, die zur Vorbereitung (siehe hierzu auch bei Lernhilfen) und Durchführung des Moduls von Interesse sind.
6. Modulbeschreibungen

6.1 BWB1 – Mathematik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Mathematik für Chemie / Mathematics for Chemistry</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Mathematik für Chemie</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Brecht</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Brecht, Dipl. chem. Karpa</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehreform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik</td>
<td>Vorlesung und Übungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

| Summe | 60 | 90 | 150 | 5 |

Kreditpunkte:	5
Voraussetzungen nach Prüfungsordnung:	Keine
Empfohlene Voraussetzungen:	Gute Kenntnisse des Abiturstoffes der Gymnasien in Mathematik (s. Mindestanforderungskatalog Mathematik (Version 2.0)), Besuch der Vorkurse wird empfohlen, ist jedoch nicht verpflichtend.

<table>
<thead>
<tr>
<th>Modulziel / Angestrebte Lernergebnisse</th>
<th>Aneignung von relevanten mathematischen Kenntnissen für Biologie und Naturwissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Die Studierenden kennen die für das Verständnis von mathematischen Zusammenhängen und Denkweisen relevanten Größen und Ansätze (K1)</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden verfügen über ein grundlegendes Verständnis für die Herangehensweise an mathematische Probleme in den Lebenswissenschaften und können diese entsprechend einordnen (K2)</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen mathematische Lösungsmethoden für unterschiedliche Problemstellungen und können diese umsetzen bzw. die Probleme lösen (K1, K3)</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden können die erlangten Kenntnisse auf unbekannte mathematische Fragestellungen in den biomedizinischen Wissenschaften übertragen, diese analysieren und lösen (K4, K5)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Mathematik:</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>• Wiederholung mathematischer Grundlagen</td>
</tr>
<tr>
<td></td>
<td>• Vektoralgebra</td>
</tr>
<tr>
<td></td>
<td>• Funktionen und Kurven</td>
</tr>
<tr>
<td></td>
<td>• Differenzialrechnung</td>
</tr>
<tr>
<td></td>
<td>• Integralrechnung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Bestandener Online-Test verpflichtend nach Studienprüfungsordnung zur Teilnahme an Klausur (Testat). Modulklausur 2h (100% der Modulnote)</th>
</tr>
</thead>
</table>

| Medienformen: | Tafelanschrieb, Power Point, Lehrvideos |

6.2 BWB2 – Physik für Biomedizinische Wissenschaften

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Physik für Biomedizinische Wissenschaften / Physics for Biomedical Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Modulniveau</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Kürzel</td>
<td>BWB2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Physik für Biomediziner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Kemkemer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Kemkemer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik für Biomediziner</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik</td>
<td>75</td>
<td>75</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>75</td>
<td>75</td>
<td>150</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 5 |

| Voraussetzungen nach Prüfungsordnung | Keine |

Seite 14 von 92
Relevanz für biologische Systeme erkennen und die Kenntnisse transferieren. (K3)

Die Studierende können einfache physikalische Probleme, insbesondere Beispiel aus den Lebenswissenschaften, analysieren und quantitativ lösen. (K4)

Die Studierenden können in Diskussionen und Übungen selbständig Lösungskonzepte für biologisch-relevante physikalische Probleme entwickeln und ableiten. (K6)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Vorlesung vermittelt theoretische Grundlagen zur Physik und nimmt Bezug zu anschaulichen Beispielen und Anwendungen aus den Lebenswissenschaften.</td>
<td></td>
</tr>
<tr>
<td>Einführung in die Physik mit den Themen</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen (Größen, Einheiten, Fehlerrechnung, Präfixe) und einfache Umrechnungen</td>
<td></td>
</tr>
<tr>
<td>• Mechanik (Kraft, Starrer Körper, Drehmoment, Statik, Elastizitätsmechanik) und Anwendung auf Biomechanik des menschlichen Körpers</td>
<td></td>
</tr>
<tr>
<td>• Fluidmechanik (Statik, Ideale Flüssigkeiten mit Kontinuum-Gleichung und Bernoulli, Viskosität, Hagen-Poiseuille, Reynoldszahl, laminare Strömung, Fluidmechanik des Blutes) und Anwendung auf Herz-Kreislaufsystem und biologische Beispiele</td>
<td></td>
</tr>
<tr>
<td>• Grenzflächen (Oberflächenspannung, Laplace-Druck, Kapillarität) und Anwendung auf biologische Phänomene</td>
<td></td>
</tr>
<tr>
<td>• Thermodynamik (System, Zustandsgrößen, Temperatur, Wärme, Wärmekapazität und Hauptsätze) sowie Anwendung in der Biomedizin (Energetik, Ordnungseffekte, chemische Reaktionen)</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen Elektrizitätslehre und Beispiele in der Physiologie (Membranpotential, ...)</td>
<td></td>
</tr>
<tr>
<td>• Optik (Grundlagen Wellenoptik, Geometrische Optik) und Anwendung auf instrumentelle Methoden wie Mikroskopie, Spektroskopie und Funktion des Auges.</td>
<td></td>
</tr>
</tbody>
</table>

| Studien-/Prüfungsleistungen: | Abgabe von vorgegebener Anzahl von Übungsblättern (HA, Voraussetzung zur Teilnahme an Klausur) und Modulklausur 2 h (100% der Modulnote) |

| Medienformen: | Experimentalvorlesung, Tafelanschrieb und Folien, Materialien (Tabellen, Graphen, Teile von Vorlesungsskripten), Filme (Khan Academy), Animationen, Beispielaufgaben, Übungsaufgaben |

6.3 BWB3 - Allgemeine und Analytische Chemie I

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Allgemeine und Analytische Chemie / General and Analytical Chemistry</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB3</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Allgemeine und Analytische Chemie I</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. habil. Andreas Kandelbauer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. habil. Andreas Kandelbauer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Allgemeine u. Analytische Chemie</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Allgemeine und Analytische Chemie I</td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen für die Teilnahme:</td>
<td>Gute Schulkenntnisse in Chemie</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Nach Abschluss des Moduls verfügen die Studierenden über das nötige Grundwissen, um die weiterführenden Lehrveranstaltungen und folgenden Laborpraktika verstehen und erfolgreich absolvieren zu können. Sie sind in der Lage</td>
</tr>
<tr>
<td></td>
<td>wesentliche Aspekte des sicheren Arbeitens im Umgang mit Gefahrstoffen anzugeben (K1)</td>
</tr>
<tr>
<td></td>
<td>wichtige Grundprinzipien der Chemie zu verstehen und mit ihrer Hilfe zu argumentieren (K2)</td>
</tr>
<tr>
<td></td>
<td>Begriffe und Strategien aus der chemischen Analytik zu erklären und gegenüberzustellen (K2)</td>
</tr>
<tr>
<td></td>
<td>chemische Berechnungen durchzuführen (K3)</td>
</tr>
<tr>
<td></td>
<td>wichtige Zusammenhänge zu Aufbau, Systematik und Eigenschaften der chemischen Elemente zu benutzen (K3)</td>
</tr>
<tr>
<td></td>
<td>anorganische Verbindungen der Hauptgruppenelemente nomenklaturgerecht zu benennen und ihre räumlichen und elektronischen Eigenschaften vorauszusagen (K3)</td>
</tr>
<tr>
<td></td>
<td>Modelle der chemischen Bindung zu verstehen und anzuwenden (K3)</td>
</tr>
<tr>
<td></td>
<td>Reaktionsgleichungen aufzustellen und handzuhaben (K3)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Sicherheitsfragen und Umgang mit Gefahrstoffen</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Allgemeinen Chemie: Überblick über die Elemente und Aufbau des Periodensystem PSE; Atombau und Periodizität der Eigenschaften</td>
</tr>
</tbody>
</table>
- Chemisches Rechnen: Grundlagen und spezielle Anwendungen der Stöchiometrie
- Nomenklatur anorganischer Verbindungen
- Einführung in die Chemie der Molekülverbindungen: Verständnis von Molekülbau, Erstellung von Lewis-Strukturförmeln, Beschreibung der Molekülgeometrie / VSEPR-Modell
- Chemische Bindung: Chemische Bindungsmodelle (ionisch, kovalent, koordinativ), Lewis Theorie; Dipole, sekundäre Wechselwirkungen
- Chemische Reaktionen: Grundtypen chemischer Reaktionen (Säuren und Basen, Komplexbildung, Reduktion und Oxidation), ausgewählte Beispiele
- Chemische Grundprinzipien (Grundbegriffe der Thermodynamik: chemisches Gleichgewicht und Prinzip von Le Chatelier, Grundbegriffe der Kinetik: Reaktionsgeschwindigkeit und Katalyse)
- Grundlagen der Chemischen Analytik (Vorgehensweise und Strategie bei der Durchführung chemischer Analysen, Begrifflichkeiten und Methodik, Aufgaben und Bedeutung der qualitativen und quantitativen Analyse, konkrete Beispiele zur Illustration)
- Grundlagen der Chemie von wässrige Lösungen
- Grundlagen der Chemie der Haupt- und Nebengruppenlelemente

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur 2 h (100% der Modulnote)</th>
</tr>
</thead>
</table>

| Medienformen: | Vorlesung, Ausführlicher Tafelanschrieb, Overhead-Folien, Übungsaufgaben, Tischvorlagen, Formelsammlung, Skripte zur Ergänzung durch eigene Notizen, Übungsaufgaben, Tischvorlagen, Formelsammlung |

4. Jander-Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel-Verlag

Seite 17 von 92
6.4 BWB4 – Grundlagen der Materialwissenschaften

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Materialwissenschaften / Fundamentals in Material Sciences</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB4</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Grundlagen der Materialwissenschaften</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Rumen Krastev</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Rumen Krastev</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Lehrform/SWS:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Materialwissenschaften</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorlesung, Ausführlicher Tafelanschrieb, PowerPoint Folien, Übungsaufgaben, Tischvorlagen, Formelsammlung, Skripte zur Ergänzung durch eigene Notizen

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Materialwissenschaften</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe: 60 | 90 | 150 | 5 |

Kreditpunkte:

5

Voraussetzungen nach Prüfungsordnung

keine

Empfohlene Voraussetzungen:

- Schulkenntnisse in Chemie, Physik und Biologie
- paralleles Lernen und Vernetzung mit den Inhalten des Moduls BWB2

Modulziel / Angestrebte Lernergebnisse:

Vermittlung einer soliden Grundausbildung auf dem Gebiet der Werkstoffwissenschaften als Basis für die biomedizinischen Wissenschaften

Kenntnisse

- Kennen, Verstehen, Klassifizieren, Vergleichen und Erklären der wichtigsten Werkstoffklassen (K2)
- Kennen und verstehen der physikalischen, chemischen und biologischen Eigenschaften von Materialien (K2)
- Verstehen der Werkstoffwissenschaften als interdisziplinäre Wissenschaft innerhalb von Chemie, Physik, Biologie, Ingenieurwesen und weiteren Disziplinen (Erkennen der Interdisziplinarität, Vergleichen der unterschiedlichen Herangehensweisen) (K2)
- Beurteilen von Material- und Werkstoffeigenschaften, Überprüfen der Einsatzmöglichkeiten und Notwendigkeiten, Differenzieren von Materialien und
Implementieren von Kenngrößen zur Beurteilung von Materialien. (K5)

Fertigkeiten

- Die Studierenden sollen in die Lage versetzt werden, die Beziehungen zwischen der Struktur und den Eigenschaften der Werkstoffe zu erkennen und zu beschreiben (Erkennen, Veranschaulichen, Klassifizieren, Zusammenfassen, Folgern und Erklären). (K4)
- Sie sollen in der Lage sein, makroskopische Materialeigenschaften auf mikroskopische Ursachen zurückführen zu können (Differenzieren, Zuordnen, Überprüfen und Beurteilen). (K4)

Fachliche Kompetenzen

- Die Studierenden sollen erkennen, dass durch gezielte Strukturveränderungen bestimmte gewünschte Eigenschaftsprofile eingestellt werden können (Erkennen, Vergleichen, Erklären, Organisieren, Zuordnen, Überprüfen und Bewerten). (K5)

Inhalt:

- Werkstoffe, Werkstoffkunde, Werkstoffgruppen
- Aufbau der Werkstoffe, Aufbau fester Phasen, Aufbau mehrphasiger Stoffe
- Beziehungen zwischen Struktur und Eigenschaften von Materialien
- Klassifikation von Materialien
- Metallische Werkstoffe
- Nichtmetallisch anorganische Werkstoffe, Keramische Werkstoffe, Verbundwerkstoffe
- Organische Werkstoffe, Polymerwerkstoffe
- Biomaterialien
- physikalische, chemische, tribologische und biologische Eigenschaften von Materialien
- Werkstoff und Fertigung - Erzeugung von Eigenschaftsprofilen durch gezielte Strukturveränderungen

Studien-/Prüfungsleistungen: Klausur 2h

Es werden im laufenden Semester parallel zur Vorlesung Übungsaufgaben gestellt - Eine Zulassung zur Prüfung/Klausur erfolgt nur, sofern eine Minimalpunktzahl (mindestens 150 Punkte) aus den Übungen (mindestens 250 mögliche Punkte) erworben wurde.

Medienformen: Skripte zur Ergänzung durch eigene Notizen, Übungsaufgaben, Tischvorlagen, Formelsammlung.

Literatur:

1. Askeland, Donald R.: Materialwissenschaften, Spektrum Akademischer Verlag, Heidelberg, 2010
6.5 BWB5 – Humanbiologie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Humanbiologie und Grundlagen der Biomedizin / Human Biology and Fundamentals in Biomedicine</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB5</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Humanbiologie 1 + 2, Grundlagen der Biomedizin</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Kluger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Kluger, Prof. Dr. Groß-Kosche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Lehrform/SWS:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanbiologie 1*</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanbiologie 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Biomedizin</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Vorlesung werden auch Übungen durchgeführt, Übungsanteil ca. 30%.

* Humanbiologie 1 in Englisch

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanbiologie 1*</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Humanbiologie 2</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Biomedizin</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>90</td>
<td>60</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung: keine

Empfohlene Voraussetzungen: Gute Schulkenntnisse in biologischen Fächern

Modulziel / Angestrebte Lernergebnisse:

- Die Studierenden können die Bestandteile einer Zelle identifizieren, können Organsysteme benennen und können grundlegende Methoden den verschiedenen Schritten des wissenschaftlichen Arbeitens zuordnen. (K1)
- Die Studierenden können den Aufbau und die Funktion menschlicher Zellen mit englischsprachigen Fachbegriffen beschreiben. (K2)
- Die Studierenden können grundlegende physiologische Abläufe im menschlichen Körper (Verdauung, Atmung, etc.) erklären. (K2)
- Die Studierenden können eine Literaturrecherche mit Hilfe von Datenbanken durchführen und laborvorbereitende Rechenaufgaben lösen. (K3)
- Die Studierenden können die zugrundeliegenden Mechanismen für wichtige Zellfunktionen (Kommunikation, Migration, Vermehrung, Zelltod) identifizieren. (K3)
Die Studierenden können die Funktionsweise von Organsystemen (Herz-Kreislauf, Nervensystem, Lunge, etc.) vereinfachen. (K4)
Die Studierenden können numerische Datensätze auswerten und daraus graphische Ergebnisse generieren. (K5)
Die Studierenden können den Aufbau einer schriftlichen wissenschaftlichen Arbeit mit den entsprechenden Abschnitten planen. (K6)

Inhalt:
- Aufbau der Zelle
- Funktionen der Zellbestandteile
- Kommunikation zwischen Zellen
- Zellvermehrung und Zelltod
- Hämatopoetisches System und Immunsystem
- Aufbau und Funktion verschiedener Organsysteme mit folgenden Schwerpunkten
 - Herz-Kreislaufsystem
 - Nervensystem
 - Atmung
 - Ernährung und Verdauung
 - Ausscheidung
 - Reproduktion
 - Wissenschaftliche Dokumentation (Laborjournal, Berichte)
 - Wissenschaftliche Recherche (Datenbanken)
 - Wissenschaftliche Veröffentlichungen
 - Grundlagen Labor (Ausrechnen von Konzentrationen, Verdünnungen, etc.)

Studien-/Prüfungsleistungen: Klausur 2 h zu Humanbiologie 1+2 (70% der Modulwertung) und Hausarbeit zu Grundlagen der Biomedizin (30% der Modulwertung)

Medienformen:
- Tafelanschrieb und Folien, Power Point, und Vorlesungsskripte, Arbeit mit PC/Tablet

Literatur:
1. Lodisch H., Berk A., Zipursky S.L., Matsudaira P., Baltimore D., Darnell j.E.: Molekulare Zellbiologie; Spektrum Akademischer Verlag
6.6 **BWB6 Unternehmensfunktionen der chemisch-pharmazeutischen Industrie**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>BSc Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Unternehmensfunktionen in der chemisch-pharmazeutischen Industrie/ Function Units in the Chemical and Pharmaceutical Industry</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB6</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Alexander Schuhmacher</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Schuhmacher</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Märkte/Branchen/Unternehmen</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wertschöpfungskette in der chem.-pharmazeutischen Industrie</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorlesung, Übungen und Seminar
Die Vorlesungen enthalten neben den theoretischen Grundlagen viele anschauliche Beispiele mit Bezug zu den Ingenieurwissenschaften.

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Märkte/Branchen/Unternehmen</td>
<td>30 45 75</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wertschöpfungskette in der chem.-pharmazeutischen Industrie</td>
<td>30 45 75</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Summe | 60 | 90 | 150 | 5 |

Kreditpunkte: 5

Voraussetzungen für die Teilnahme:

Angestrebte Lernergebnisse:

- Lernen zu erkennen, welche außerfachliche Qualifikationen und Kompetenzen notwendig sind, um einen zukünftigen Berufseinstieg zu erleichtern (K1)
- Lernen die unterschiedlichen Zielbranchen und Berufprofile ihres Studienprogramms zu verstehen (K2)
- Wenden das erlernte Wissen der Vorlesung an konkreten praxisrelevanten Beispielen an (K3)
- Lernen Branchentrends zu verstehen und interpretieren und auf die persönliche Situation anzuwenden (K3)
- Organisieren sich in Teams um eine erste Gruppenarbeit zu erfassen, Märkte, Branchen oder Unternehmen zu
analysieren, die erhobenen Daten zu interpretieren und zusammenzufassen (K4)
- Planen ihre Zeit und entwickeln dazu einen einfachen Zeitplan (K6)

Inhalt:

Markt und Märkte: Marktarten, Marktteilnehmer, Marktformen, Deutschland als Markt, Wirtschaftszweige

Branchen: Chemische Industrie, Pharmaindustrie, Biotechnologie und Medizintechnik

Unternehmen und Wertschöpfung: Bedürfnisse und Güter, Standortfaktoren, unternehmerische Herausforderungen, Wertschöpfungsketten, Unternehmensfunktionen, Marketing, Vertrieb, Materialwirtschaft, Logistik, Supply Chain Management, Produktion, Forschung und Entwicklung

Unternehmensbeispiele: Novartis, Roche, Pfizer, Bayer, Boehringer Ingelheim, BASF, Celanese, Evonik, Lanxess, AiCuris, Morphosys, Medigene, Evotec, Fresenius Medical Care, Dräger, B. Braun Melsungen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>1-stündige Klausur (40%), Referat (30%), Projektarbeit (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienform</td>
<td>Übungsaufgaben, Tafel, Folien, Power Point, Exponate, Fotografien</td>
</tr>
</tbody>
</table>
| Literatur | Märkte, Branchen und Wertschöpfung:

2. Das Skriptum „Märkte, Branchen und Wertschöpfung“ sowie weitere Infos sind im Intranet der Hochschule abrufbar.
6.7 BWB7 – Medizinische Grundlagen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Medizinische Grundlagen / Fundamentals in Medicine</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB7</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen: | Anatomie
Physiologie
Pathologie |

Studiensemester:
2

Modulverantwortliche(r):
Prof. Dr. Günter Lorenz

Dozent(in):
Prof. Dr. med. Kuno Weise
Dr. Dieter Kaufmann

Sprache:
Deutsch

Zuordnung zum Curriculum:
Pflichtmodul

Lehrform/SWS:
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>Ü</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomie</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiologie</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologie</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomie</td>
<td>30</td>
<td>60</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>Physiologie</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologie</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>90</td>
<td>60</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte:
5

Voraussetzungen nach Prüfungsordnung:
keine

Empfohlene Voraussetzungen:
Erfolgreiche Teilnahme an BWB5

Modulziel / Angestrebte Lernergebnisse:
Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage
- Grundlagen der Anatomie, Physiologie und Pathologie zu reproduzieren (K1).
- humanbiologischen Prozessen und Krankheitsbildern zu beschreiben (K2).
- das Erlernte auf Fragestellungen in den Lebenswissenschaften anzuwenden (K3).

Inhalt:
Anatomie
- Teilgebiete der Anatomie
- Gliederung des Körpers
- Einführung in die medizinische Fachsprache und praktische Anwendung durch das Übersetzen von medizinischen Befunden und Texten aus dem Bereich der Chirurgie
Nach einer Einführung in die Anatomie wird der Stoff an ausgewählten Beispielen vertieft (z.B. Herz, Skelettsystem, Haut) und die möglichen Therapieformen mittels Implantaten oder Transplantaten vorgestellt und durch das Studium ausgewählter medizinischer Texte vertieft.

Pathologie
- Grundbegriffe der Pathologie
- Pathologie (chirurgische Krankheitsbilder) wie z.B.: Wundheilung, Frakturheilung, chirurgische Infektionen etc.
- Chirurgie/Unfallchirurgie/Orthopädie

Physiologie
- Sinnesphysiologie
- Regulation vegetativer Funktionen
- Herz und Kreislauf
- Blut und Immunabwehr
- Atmung

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur 2h (70%), Referat (Präsentation/Vortrag) (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrieb und Folien, Power Point, Vorlesungsskripte</td>
</tr>
</tbody>
</table>

Literatur:
2. Caspar W, Lackner C: Medizinische Terminologie Thieme Verlag
3. Pschyrembel W Pschyrembel - Klinisches Wörterbuch Walter de Gruyter
5. Hirner A., Weise K. Chirurgie: Schnitt für Schnitt Thieme Verlag
6.8 BWB8 – Labor chemische Grundlagen der Biomedizin

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Labor Chemische Grundlagen der Biomedizin / Lab Chemistry for Biomedical Sciences</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel:</td>
<td>BWB 8</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Kluger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Kluger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>V U P S</td>
</tr>
<tr>
<td></td>
<td>Labor chemische Grundlagen der Biomedizin 4</td>
</tr>
<tr>
<td>Skripte zur Ergänzung durch eigene Notizen, Praktisches Arbeiten im Labor</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung Präsenz Eigenstudium Summe CP</td>
</tr>
<tr>
<td></td>
<td>Labor chemische Grundlagen der Biomedizin 60 90 150 5</td>
</tr>
<tr>
<td>Summe</td>
<td>60 90 150 5</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>1. Bestandene Klausur von Modul BWB3 2. Bestandesnes Sicherheitskolloquium</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Allgemeine und Analytische Chemie, Grundlagen der Biomedizin</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden können die wichtigsten Geräte und Gegenstände des Laborarbeitsplatzes und Bestandteile eines Lichtmikroskops benennen. (K1)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können Regeln der Laborsicherheit und verschiedene Präparationstechniken bei der Lichtmikroskopie erklären. (K2)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können die durchzuführenden Versuche sowie den chemischen Hintergrund beschreiben und den erwarteten Versuchsdurchlauf und das erwartete Ergebnis diskutieren. (K2)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können notwendige Rechnungen zu den Versuchen lösen. (K3)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können grundlegende Techniken wie Wiegen, Auflösen von Stoffen etc. sicher und sauber vorbereiten und durchführen. (K3)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können ein Lichtmikroskop bedienen. (K3)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können ihre praktischen Arbeitsschritte selbständig organisieren. (K4)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Studierenden können ihre Ergebnisse selbständig in einem Protokoll auswerten und beurteilen. (K5)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Inhalt:** | **Sicherheit im Labor**
Arbeiten nach praktischen Laboranweisungen
Dokumentation der Ergebnisse; Protokollführung
Wiegen von Stoffen, Volumina messen,
Lösungen, Stoffmengen und Konzentrationen
pH-Wert
analytische Methoden
Mikroskopieren
Herstellung verschiedener Präparate |
| Studien-/Prüfungsleistungen: | **Die Modulnote setzt sich zusammen aus mündlichen (30%) und schriftlichen Kolloquien (30%), Laborarbeit und Protokollen (40%).** |
| Medienformen: | **Power-Point Folien, Skripte zur Ergänzung durch eigene Notizen, Praktisches Arbeiten im Labor** |
3. Mortimer, C. E.: Chemie Basiswissen, Thieme Verlag,
6.9 BWB9 – Organische Chemie I

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Organische Chemie I / Organic Chemistry I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Organische Chemie I</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Günter Lorenz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Günter Lorenz,</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organische Chemie I</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorlesung, Interaktives Skript, Tutorials, Tafelanschrieb, Softwareapplikationen Excel.

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organische Chemie I</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
</table>

| Voraussetzungen nach Prüfungsordnung: | Erfolgreicher Abschluss von Modul BWB3 |

| Empfohlene Voraussetzungen: |

<table>
<thead>
<tr>
<th>Modulziel / Angestrebte Lernergebnisse:</th>
<th>Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Chemische Bindungen und elektronischen Strukturen zu definieren (K1)</td>
</tr>
<tr>
<td></td>
<td>• Organische Verbindungen zu klassifizieren und organisch-chemischen Strukturen zu benennen (K2)</td>
</tr>
<tr>
<td></td>
<td>• Chemische Reaktionen zu unterscheiden und deren Anwendung zu erfassen (K4)</td>
</tr>
<tr>
<td></td>
<td>• auf Basis des erworbenen Wissens chemische Reaktionsmechanismen selbstständig zu formulieren und zu charakterisieren (K5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Elektronische Struktur und Bindung (Atom- und Molekülorbitale, Hybridisierung, Bindungsarten)</td>
</tr>
</tbody>
</table>
Mechanismen (Auswahl).
Additionsreaktion (elektrophil, radikalisch, nucleophil)
Nucleophile aliphatische Substitution
Radikalische Substitution
Eliminierungsreaktionen
Elektrophile und nucleophile aromatische Stabstitution Hierbei werden u. a. auch Struktureinflüsse, stereochemische Aspekte, Ein- und Austrittsgruppe, Lösungsmittel-einfluss, Carbonylaktivität, mesomere Grenzstrukturen, Energieprofile besprochen.
Stereochemie (chirale und achirale Strukturen, optische Aktivität, relative und absolute Konfiguration, Diasteomere, Mesostrukturen, Fischer-Projektion, Stereochemie chemischer Reaktionen, Enantiomerenentrennung
Retro-Synthese
Grignard-Reaktion
Phasentransferkatalysierte Reaktion
Ozonolyse
Carbanionen-Chemie
Rohstoffbasis der organischen Grundstoffchemie und Problematik der zukünftigen Rohstoffversorgung und Nachhaltigkeit.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur 2h (100% der Modulnote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Skript zur Ergänzung durch eigene Notizen, Tafelfilme, PowerPoint, Übungsaufgaben</td>
</tr>
</tbody>
</table>
6.10 BWB10 – Biophysikalische Chemie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Biophysikalische Chemie / Biophysical Chemistry</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB10</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Biophysikalische Chemie</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Krastev</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Krastev</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch und Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysikalische Chemie</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorlesung, Interaktives Skript, Tutorials, Tafelanschrieb, Softwareapplikationen Excel

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysikalische Chemie</td>
<td></td>
<td>60</td>
<td>60</td>
<td>120</td>
<td>5</td>
</tr>
</tbody>
</table>

| Summe | 60 | 60 | 120 | 5 |

| Kreditpunkte: | 5 |

Voraussetzungen nach Prüfungsordnung: Erfolgreicher Abschluss von BWB2 und BWB3

Empfohlene Voraussetzungen: Mathematik für Chemie, Allgemeine und Analytische Chemie, Physik für Biomedizinische Wissenschaften

Modulziel/Angestrebte Lernergebnisse: Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:

- grundlegende Fachkenntnisse im Fach Physikalische Chemie für die Gebiete „Thermodynamik“, „Chemische Thermodynamik“, „Chemische Kinetik“, „Mischphasenthermodynamik“ und „Phasendiagramme“, „Stofftransport“ Struktur und Dynamik von Biomolekülen zu verstehen (K1)
- die grundlegenden physikalisch-chemischer Prinzipien und Methoden zu benennen (K1)
- den theoretischen Hintergrund der Beziehung von chemischen Strukturen zu den makroskopischen Eigenschaften der Stoffe zu definieren (K3)
- komplexe Problemstellungen unter Anwendungen der wissenschaftlichen Arbeitsmethoden in der physikalischen Chemie zu vereinfachen (K4)
• auf Basis des erworbenen Wissens physikalisch chemische Messtechniken und Auswertungsmethoden kompetent zu bewerten (K5)
• selbstständig anspruchsvolle Fragestellungen zu formulieren und beantworten (K6)

Inhalt:

Grundlagen der Thermodynamik

Phasengleichgewicht.
• Kolligative Eigenschaften - Osmose, Donnan-Gleichgewicht, Ebulioskopie und Kryoskopie.
• Biologische Relevanz. Phasenübergänge in biologischen Systemen - Lipide, Proteine, DNA.

Systeme im Gleichgewicht.
• Protonengleichgewichte. pH, Salzlösungen, Puffer.

Ionen- und Elektronentransport
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systeme im Übergang</td>
</tr>
<tr>
<td>Die Reaktionsraten. Abhängigkeit von der Konzentration. Temperaturabhängigkeit der chemischen Reaktionen - Arrhenius-Gleichung.</td>
</tr>
<tr>
<td>Katalytische Reaktionen. Biokatalyse - enzymatische Reaktionen. Michaelis-Menten-Mechanismus.</td>
</tr>
<tr>
<td>Diffusion. 1. und 2. Fick'sches Gesetz. Diffusionskoeffizient. Permeabilität.</td>
</tr>
<tr>
<td>Biologische Relevanz. Pharmakokinetik. Protein Faltung und Entfaltung.</td>
</tr>
<tr>
<td>Strukturen von Biomolekülen. Chemische Bindungen.</td>
</tr>
<tr>
<td>Grundlagen zur strukturellen Aufklärung von Biomolekülen. Elektronenmikroskopie. Spektroskopie.</td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen: Klausur 2 h (100% der Modulnote)

Medienformen: Skript zur Ergänzung durch eigene Notizen, Tafelbilder, PowerPoint, Übungsaufgaben am PC, Interaktive Beispiele und Simulationen

Literatur:

1. P. Atkins, J. de Paula Physical Chemistry for the Life Sciences, Oxford University Press.
2. P. Atkins, J. de Paula Atkins: Physikalische Chemie Wiley-VCH; Auflage: 5; 2013
3. P. Atkins, J. de Paula Atkins’ Physical Chemistry, Oxford University Press
5. C. Czeslik, H. Seemann, R. Winter Basiswissen Physikalische Chemie, Vieweg+Teubner Verlag | Springer
BWB11 Labor Biophysikalische Chemie

Studiengang: B.Sc. Biomedizinische Wissenschaften

Modulbezeichnung: Labor Biophysikalische Chemie / Lab Biophysical Chemistry

ggf. Modulniveau:

ggf. Kürzel: BWB11

ggf. Untertitel:

ggf. Lehrveranstaltungen: Labor Biophysikalische Chemie

Studiensemester: 2

Modulverantwortliche(r): Prof. Dr. Krastev

Dozent(in): Prof. Dr. Krastev

Sprache: Englisch und Deutsch

Zuordnung zum Curriculum: Pflichtmodul

Lehrform/SWS: Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Biophysikalische Chemie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>70</td>
<td>130</td>
<td>5</td>
</tr>
</tbody>
</table>

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Biophysikalische Chemie</td>
<td>60</td>
<td>70</td>
<td>130</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>70</td>
<td>130</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung: Erfolgreiche Teilnahme an BWB3

Empfohlene Voraussetzungen: Mathematik für Chemie, Allgemeine und Analytische Chemie, Physik für Biomedizinische Wissenschaften

Modulziel / Angestrebte Lernergebnisse: Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:

- grundlegenden Fachkenntnisse im Fach Physikalische Chemie für die Gebiete „Thermodynamik“, „Chemische Thermodynamik“, „Chemische Kinetik“, „Phasendiagramme“ und „Stofftransport“ zu verstehen (K1)
- die grundlegenden physikalisch-chemischer Methoden zu benennen (K1)
- komplexe Problemstellungen unter Anwendungen der wissenschaftlichen Arbeitsmethoden in der physikalischen Chemie zu vereinfachen (K4)
- auf Basis des erworbenen Wissens physikalisch chemische Messtechniken und Auswertungsmethoden kompetent zu bewerten (K5)

Inhalt:

- Sicherheit im Labor
- Fehler einer Messung. Arten von Fehlern.
- Kalorimetrie
- Potentiometrische Bestimmung der Konzentration eines starken Elektrolyten.
- Enzymkinetik der Bio-Reaktion.
- Oberflächenspannung und Tenside.
- Polyampholyten. Viskosimetrische Bestimmung des isoelektrischen Punktes eines Proteinmoleküls.
- Kryoskopische Bestimmung von Molekularmassen.

Studien-/Prüfungsleistungen:
Referat (20%), Labor mit Eingangskolloquium, Abschlusskolloquium, Versuchsprotokolle (70%, detaillierte Teilbewertung in Laboranleitung).

Medienformen:
Skript, Tafelbilder, Power Point, Übungsaufgaben am PC, Interaktive Beispiele und Simulationen

Literatur:
1. V. Ender Praktikum Physikalische Chemie 2014, Springer Spektrum
5. C. Czeslik, H. Seemann, R. Winter Basiswissen Physikalische Chemie, Vieweg+Teubner Verlag | Springer
6.12 BWB12 - Betriebswirtschaftslehre und Projektmanagement

Studiengang:	B.Sc. Biomedizinische Wissenschaften				
Modulbezeichnung:	BWL und Projektmanagement / Business Administration and Project Management				
Kurz:	BWB12				
Lehrveranstaltungen:	Betriebswirtschaftslehre, Projektmanagement				
Studiensemester:	2				
Modulverantwortliche(r):	Prof. Dr. Alexander Schuhmacher				
Dozent(in):	Prof. Dr. Alexander Schuhmacher, Michael Kuss				
Sprache:	deutsch, dabei können schriftliches Material und Tafelanschrieb in englischer Sprache gehalten sein				
Zuordnung zum Curriculum:	Pflichtmodul				
Lehrform / SWS:					
Lehrveranstaltung	V	U	P	S	
Betriebswirtschaftslehre	2	-	-	-	
Projektmanagement	1	1	-	-	
Arbeitsaufwand in Stunden:	Lehrveranstaltung	Präsenz	Eigenstudium	Summe	CP
Betriebswirtschaftslehre	30	45	75		
Projektmanagement	30	45	75		
Summe	60	90	150	5	
Kreditpunkte:	5				
Voraussetzungen für die Teilnahme:	Laut Studien- und Prüfungsordnung				

Modulziel / Angestrebte Lernergebnisse:

Durch die Teilnahme am Modul werden Fach-, Sozial- und Persönlichkeitskompetenzen geschult. Insbesondere Lernen die Studierenden die Grundlagen der Betriebswirtschaftslehre zu verstehen (K2). Dazu gehören u.a. Formen der Existenzgründung, Finanzierungsmöglichkeiten für ein Start-up, Finanz- und Finanzierungsplanung, Rechtsformen von Unternehmen und Personalmanagement. Lernen die Studierenden die Grundlagen des Projektmanagements zu verstehe, so z.B. Projektlebenszyklus, Zeitplanung, Ressourcenplanung, Teambuilding, Teamführung. Im Vorlesungsübergreifenden Projekt wenden die Studierenden das erlerte Wissen aus den Bereichen BWL und Projektmanagement an. (K3)
Dabei werden die Kommunikations- und Kooperationsfähigkeit der Studierenden in der Kleingruppenarbeit und durch Präsentationen geschult.
Insbesondere organisieren sich die Studierende im Projektteam selbst, bearbeiten in einer zweitägigen Veranstaltung eine Fallstudie und lernen die ihnen zur Verfügung stehenden Ressourcen zu planen und zu organisieren. Dabei analysieren sie die Situation der Fallstudie und entwickeln (planen) eigene Geschäftsидеen. (K6)
Sie lernen an einem konkreten Fall, wie man einen Businessplan schreibt. Die Teilnehmer erkennen, was notwendig ist, selbständig ein Projekt zur Umsetzung einer Geschäftsиде und Gründung einer Firma zu starten. (K2)
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Betriebswirtschaftslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Existenzgründung</td>
</tr>
<tr>
<td></td>
<td>- Businessplan</td>
</tr>
<tr>
<td></td>
<td>- Finanzierung und Förderung</td>
</tr>
<tr>
<td></td>
<td>- Rechtsformen</td>
</tr>
<tr>
<td></td>
<td>- Steuern</td>
</tr>
<tr>
<td></td>
<td>- Rechnungswesen</td>
</tr>
<tr>
<td></td>
<td>- Kosten- und Erlösrechnung</td>
</tr>
<tr>
<td></td>
<td>- Personalmanagement</td>
</tr>
<tr>
<td></td>
<td>- Strategie, Marketing und Preise</td>
</tr>
<tr>
<td></td>
<td>Projektmanagement</td>
</tr>
<tr>
<td></td>
<td>- Grundwissen zum Projektmanagement</td>
</tr>
<tr>
<td></td>
<td>- Projektorganisation und Führung</td>
</tr>
<tr>
<td></td>
<td>- Projektlebenszyklus</td>
</tr>
<tr>
<td></td>
<td>- Projektmanagementprozesse</td>
</tr>
</tbody>
</table>

| Studien-/Prüfungsleistungen: | Klausur 2 h (60%), Referat (40% der Modulnote) |
| Medienformen: | Tafel, Overhead-Projektor, PowerPoint, Flip-Chart |

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Organische Chemie II für Biomed. Wiss. / Organic Chemistry II for Biomedical Sciences</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB13</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Organische Chemie II / Organic Chemistry II</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Günter Lorenz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Günter Lorenz</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Organische Chemie II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organische Chemie II</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>BWB9</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>BWB3, BWB4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziel / Angestrebte Lernergebnisse:</th>
<th>Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Aromatische Verbindungen, Carbonylverbindungen und Proteine zu definieren (K1)</td>
</tr>
<tr>
<td></td>
<td>• Reaktionen am Aromaten und Reaktionen von Carbonylverbindungen zu klassifizieren und zu diskutieren (K2)</td>
</tr>
<tr>
<td></td>
<td>• Synthesewege einfache Zielmoleküle mittels Retrosynthese darzustellen (K3)</td>
</tr>
<tr>
<td></td>
<td>• auf Basis des erworbenen Wissens chemische Reaktionsmechanismen zu formulieren (K4)</td>
</tr>
<tr>
<td></td>
<td>• In der Literatur beschriebene einfache Synthesen zu bewerten (K5)</td>
</tr>
<tr>
<td></td>
<td>• einfache Kopplungsreaktionen zur Anpassung von Materialien an biologische Systeme einzusetzen (K6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Reaktionen am Aromaten: elektrophile aromatische Substitution; nukleophile aromatische Substitution</td>
</tr>
<tr>
<td></td>
<td>• Carbonylverbindungen: Klasse I und Klasse II Carbonylverbindungen</td>
</tr>
<tr>
<td></td>
<td>• Kopplungsreaktionen, Clickchemie</td>
</tr>
<tr>
<td></td>
<td>• CH-Acidität, Aldolreaktion</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Klausur 2 h (100% der Modulnote)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skript zur Ergänzung durch eigene Notizen, Tafelbilder, PowerPoint, Primärliteratur</td>
</tr>
</tbody>
</table>
| **Literatur:** | 1. Bruice, P. Y.: Organische Chemie, Pearson, 2007

Ein Skript zum Unterricht und Übungen für das Selbststudium werden im Intranet der Fakultät angeboten.
Zum Thema Clickchemie und Kopplungsreaktionen werden Publikationen zur Verfügung gestellt.
6.14 BWB14 – Labor Organische Chemie für Biomedizinische Wissenschaften

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Labor Organische Chemie für Biomed. Wissenschaften / Lab Organic Chemistry for Biomedical Sciences</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB14</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Labor</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Siegfried Blösl</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Siegfried Blösl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Labor Organische Chemie</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td>Labor Organische Chemie</td>
<td>60</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Die Labore Chemische Grundlagen der Biomedizinischen Wissenschaften (BWB8) und Biophysikalische Chemie (BWB11) müssen erfolgreich abgeschlossen sein.</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreich absolvierten Labor sind die Studierenden in der Lage</td>
</tr>
<tr>
<td></td>
<td>einfach Synthese-/Arbeitsmethoden im Labormaßstab zu planen, praktisch (unter Beachtung der Sicherheitsvorschriften) durchführen und beherrschen die experimentellen Fertigkeiten sowie die Aufarbeitungs- und Reinigungsmethoden. (K3)</td>
</tr>
<tr>
<td></td>
<td>organische Produkte zu charakterisieren (K3)</td>
</tr>
<tr>
<td></td>
<td>sachgerecht mit Chemikalien (Gefahrstoffen), Abfällen und Arbeitsgeräten umzugehen (K5)</td>
</tr>
<tr>
<td></td>
<td>Versuche exakt und nachvollziehbar zu protokollieren</td>
</tr>
<tr>
<td></td>
<td>im Team zu arbeiten</td>
</tr>
</tbody>
</table>
Inhalt:

Studien-/Prüfungsleistungen:

- Praktische Arbeit (Gewichtung: 40 %)
- Herstellung der Präparate und Charakterisierung.
- Zwei Protokolle werden testiert.
- Antestate (Gewichtung: 20 %)
- Abschlusskolloquium (Gewichtung: 40 %).

Medienformen:

- Ausführlicher Tafelanschrieb, Overhead-Folien, Tischvorlagen, Formelsammlungen, Skripte zur Ergänzung durch eigene Notizen, Übungsaufgaben zur Spektreninterpretation werden im Rahmen der Übungen bearbeitet und besprochen.

Literatur:

6.15 BWB15 – Biochemie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Biochemie / Biochemistry</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel:</td>
<td>BWB15</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Reinhard Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Reinhard Kuhn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Lehrform/SWS:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemie</td>
<td>V 3 U 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorlesung, Vorlesungsunterlagen zum Herunterladen, Übungsfragen,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Übungen zur Biochemie</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte:

5

Voraussetzungen nach Prüfungsordnung:

keine

Empfohlene Voraussetzungen:

Grundkenntnisse der organischen und physikalischen Chemie

Modulziel / Angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:

- Grundlegende Kenntnisse über die chemischen Eigenschaften der verschiedenen Stoffklassen der Biochemie, z.B. Aminosäuren, Proteine, Kohlenhydrate, Lipide, Nukleinsäuren, erlangt zu haben (K1)
- Enzymatische Prozesse zu verstehen, Enzymreaktionen zu beschreiben und deren Anwendungen im Rahmen der Diagnostik nachzu vollziehen (K2)
- Prinzipien der Wirkungsweise von ausgewählten Arzneimitteln zu verstehen (K2)
- Komplexe biochemische Prozesse, z.B. Transkription, Translation, Replikation, zu verstehen und deren Verläufe nachzu vollziehen (K2)
- Kontrolle und Regulation von Stoffwechselprozessen zu verstehen (K2)
- Gesetzmäßigkeiten des Metabolismus zu verstehen und an ausgewählten Stoffwechselwegen zu bewerten (K3)
- Molekulare Erkennung und nicht-kovalente Bindungen als Grundprinzip der Biochemie zu verstehen und deren Anwendung in der Diagnostik zu bewerten (K3)
- auf Basis des erworbenen Wissens biochemische Sachverhalte und darauf basierende Verfahren kompetent zu bewerten (K4)
- selbstständig anspruchsvolle analytische Fragestellungen zu formulieren und durch Auswahl geeigneter Analysenverfahren zu beantworten (K5)

<table>
<thead>
<tr>
<th>Inhalt: Vorlesungsinhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen der Biochemie</td>
</tr>
<tr>
<td>• Aminosäuren: allgemeine chemische Eigenschaften, Chirality, Strukturen der genetisch codierten Aminosäuren</td>
</tr>
<tr>
<td>• Peptide: Peptidbindung, Nomenklatur</td>
</tr>
<tr>
<td>• Proteine: Aufbau von Proteinen, Struktur und chemische Eigenschaften</td>
</tr>
<tr>
<td>• Enzyme: Nomenklatur, Thermodynamik enzymatischer Reaktionen, Enzymkinetik</td>
</tr>
<tr>
<td>• Kohlenhydrate: Struktur und chemische Eigenschaften von Monosacchariden, Oligosaccharide und Glycane, wichtige Polysaccharide</td>
</tr>
<tr>
<td>• Lipide: Chemie der Lipide, Mizellen, Lipiddoppelschichten, biologische Zellmembranen, Transportphänomene durch Zellmembranen</td>
</tr>
<tr>
<td>• Nucleinsäuren: Aufbau und Eigenschaften von Nucleotiden, Struktur und Eigenschaften von DNA und RNA, Genetischer Code, Transkription und Translation</td>
</tr>
<tr>
<td>• Metabolismus</td>
</tr>
<tr>
<td>• allgemeine Gesetzmäßigkeiten des Stoffwechsels</td>
</tr>
<tr>
<td>• Glycolyse und Gluconeogenese</td>
</tr>
<tr>
<td>• Citratzyklus</td>
</tr>
<tr>
<td>• Oxidative Phosphorylierung</td>
</tr>
<tr>
<td>• Photosynthese</td>
</tr>
<tr>
<td>• Signaltransduktion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen: Klausur 2h (100% der Modulnote)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen: Vorlesungsunterlagen zur Ergänzung durch eigene Notizen, Tafelbilder, PowerPoint, Übungsaufgaben</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
</table>
6.16 BWB16 – Mikrobiologie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Mikrobiologie / Microbiology</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB16</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Mikrobiologie 1 + 2</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, dabei können schriftliche Materialien und Tafelanschriebe in englischer Sprache sein</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum

<table>
<thead>
<tr>
<th>Pflichtmodul</th>
</tr>
</thead>
</table>

Lehrform/SWS:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrobiologie 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrobiologie 2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrobiologie 1</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Mikrobiologie 2</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte:

| 5 |

Voraussetzungen nach Prüfungsordnung

| keine |

Empfohlene Voraussetzungen:

| Humanbiologie |

Modulziel/Angestrebte Lernergebnisse

- Die Studierenden erlernen die mikrobiologischen Fachtermini (K1)
- Sie erkennen die Vielfalt der Bakterien, Archaea, Hefen und Pilzen, und verstehen ihren Aufbau und ihre Stoffwechselwege. (K1, K2)
- Die Studierenden verstehen die Wechselwirkung zwischen Mensch und Mikroorganismen und können eine Risikobewertung beim Arbeiten mit Mikroorganismen vornehmen (K3)
- Die Studierenden können ein wissenschaftliches Experiment strukturieren (Kontrollen, unbekannte Probe) (K3)
- Die Studierenden können Schauversuche auswerten und interpretieren (K3, K4, K5)

Inhalt:

- Mikrobiologie 1 und 2:
 - Entdeckung der Mikrobiologie
 - Zellstrukturen
 - Aerobe und anaerobe katabole Stoffwechselwege
 - Wachstum in Kultur
 - Mutation und Gentransfer
<table>
<thead>
<tr>
<th>Molekularbiologie der Prokaryoten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nützliche und pathogene Wechselwirkungen mit dem Menschen</td>
</tr>
<tr>
<td>Mikrolebensräume, Toträume und Biofilme</td>
</tr>
<tr>
<td>Hygiene und Sterilität</td>
</tr>
<tr>
<td>Klassische wissenschaftliche Experimente, ihr Aufbau, Ergebnisse und Diskussion</td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen: Klausur 2h (100% der Modulote)

Medienformen: Ausführlicher Tafelanschrieb, Overhead-Folien, Handouts

Literatur:

1. G. Fuchs: Allgemeine Mikrobiologie – Thieme, Stuttgart
2. W. Fritsche: Mikrobiologie. – Spektrum Akademischer Verlag, Heidelberg
3. M. T. Madigan u.a.: Brock Mikrobiologie. – Pearson Studium, München
5. E. Bast: Mikrobiologische Methoden. – Spektrum Akademischer Verlag, Heidelberg
7. R. Süßmuth et al.: Mikrobiologisch-biochemisches Praktikum. – Thieme, Stuttgart
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Labor Mikrobiologie / Laboratory Microbiology</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB17</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, dabei können schriftliche Materialien in englischer Sprache sein</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Lehrveranstaltung V U P S</td>
</tr>
<tr>
<td></td>
<td>Labor Mikrobiologie - - 4 -</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung Präsenz Eigen- studium Summe CP</td>
</tr>
<tr>
<td></td>
<td>Labor Mikrobiologie 60 90 150 15 0 5</td>
</tr>
<tr>
<td>Summe</td>
<td>60 90 150 15 0 5</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Kolloquium</td>
<td>Alle Versuche und Protokolle müssen abgeschlossen sein. Über Ausnahmen entscheidet der Prüfungsausschuss.</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>• Studierende lernen im S2-Labor zu arbeiten, sowie mikrobiologische Techniken incl. Handhabung S2-Werkbank, Autoklav, unterschiedliche Lichtmikroskope (K1)</td>
</tr>
<tr>
<td></td>
<td>• Studierende arbeiten nach Versuchs vorschrift (K1) Sie strukturieren ihre Arbeitsabläufe (K2)</td>
</tr>
<tr>
<td></td>
<td>• Sie analysieren und interpretieren ihre im Labor erzielten Ergebnisse und wenden dabei ihre theoretischen Kenntnisse an (K3, K4, K5).</td>
</tr>
<tr>
<td></td>
<td>• Sie fertigen 2 ausführliche schriftliche Protokolle an, in denen sie die Ergebnisse verschiedener Versuche logisch aufbereiten und beurteilen (K5)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Abklatschtest (Händedesinfektion)</td>
</tr>
<tr>
<td></td>
<td>• Agardiffusionstest (Mischkultur Mundflora)</td>
</tr>
<tr>
<td></td>
<td>• Gramfärbung und Methylblaufärbung</td>
</tr>
<tr>
<td></td>
<td>• Verdünnungsausstrich, McFarland-Standard</td>
</tr>
<tr>
<td></td>
<td>• Wachstum auf verschiedenen Medien</td>
</tr>
<tr>
<td></td>
<td>• Identifikation eines unbekannten Bakteriums</td>
</tr>
<tr>
<td></td>
<td>• MHK-Versuch</td>
</tr>
<tr>
<td></td>
<td>• Keimbelastung von Umweltproben</td>
</tr>
<tr>
<td></td>
<td>• ISO 22196 antibakterielle Oberflächen</td>
</tr>
<tr>
<td></td>
<td>• Autoklavieren und Hitzesterilisieren</td>
</tr>
<tr>
<td></td>
<td>• Medienherstellung</td>
</tr>
</tbody>
</table>
| Studien- und Prüfungsleistungen | Kolloquien, Protokolle
| Gewichtung siehe Laborskript |
| Medienformen | Laborskript |
| Literatur |
| 1. G. Fuchs: Allgemeine Mikrobiologie – Thieme, Stuttgart |
| 2. W. Fritsche: Mikrobiologie. – Spektrum Akademischer Verlag, Heidelberg |
| 3. M. T. Madigan u.a.: Brock Mikrobiologie. – Pearson Studium, München |
| 5. E. Bast: Mikrobiologische Methoden. – Spektrum Akademischer Verlag, Heidelberg |
| 7. R. Süßmuth et al.: Mikrobiologisch-biochemisches Praktikum. – Thieme, Stuttgart |
| Praktikumsskriptv |
6.18 BWB18 – Grundlagen der Instrumentellen Analytik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Instrumentellen Analytik / Fundamentals in Instrumental Analysis</td>
</tr>
<tr>
<td>ggf. Kürzel:</td>
<td>BWB18</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Grundlagen der Instrumentellen Analytik, Computeranwendungen in der Instrumentellen Analytik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Rebner</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Rebner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS: Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Instrumentellen Analytik</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computeranwendungen in der Instrumentellen Analytik</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorlesung, interaktives Skript, Tutorials, Tafelanschrieb, Softwareapplikationen Excel, VBA,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden: Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Instrumentellen Analytik</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>Computeranwendungen in der Analytik</td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>

| Summe | 60 | 90 | 150 | 5 |

Kreditpunkte:	5
Voraussetzungen nach Prüfungsordnung:	keine
Empfohlene Voraussetzungen:	BWB1, BWB3, Excel-Grundkenntnisse

<table>
<thead>
<tr>
<th>Modulziel / Angestrebte Lernergebnisse:</th>
<th>Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• selbstständig analytische Fragestellungen zu formulieren und geeignete Analyseverfahren zu benennen (K1).</td>
<td></td>
</tr>
<tr>
<td>• die einzelnen Schritte von Probennahme, Probenaufbereitung, Messung, Auswertung und Validierung aufzulisten (K1).</td>
<td></td>
</tr>
<tr>
<td>• den theoretischen Hintergrund und die Funktionsweise verschiedener instrumenteller Techniken zu verstehen und bezüglich ihrer Eigenschaften gegenüberzustellen (K2).</td>
<td></td>
</tr>
<tr>
<td>• Möglichkeiten und Grenzen analytischer Methoden gegenüberzustellen (K2).</td>
<td></td>
</tr>
</tbody>
</table>
analytische Problemstellungen unter Berücksichtigung chemischer und physikalischer Einflussgrößen in analytisch lösbare Messaufgaben zu transferieren (K3).

auf Basis des erworbenen Wissens Messergebnisse der verschiedenen Methoden zu analysieren (K4).

Inhalt:

Einführung in die Instrumentelle Analytik

Abgrenzung instrumenteller Methoden von klassischen analytischen Verfahren /Kategorisierung

Formulierung analytischer Probleme, Analytische Prozess und Analysenplanung.

Analysengeräte: Signalerzeugung, Operationsverstärker, Messung von Signalen und Signalverarbeitung.

Experimentelle Fehler, Fortpflanzung von Messunsicherheiten, Statistik

Messdaten-Auswertung, Quantifizierung, Ergebnisdarstellung in Abschlussberichten.

Qualitätsmanagement in der Analytik, Auditierung, Zertifizierung und Akkreditierung.

Grundlagen spektralanalytischer Methoden:

Eigenschaften elektromagnetischer Strahlung und Wechselwirkung mit Materie (Spektrenarten)

Lichtquellen, Spektrographen, Monochromatoren, Interferometer, Auflösungsvermögen, Lichtstärke und Detektoren.

Atomspektroskopie – Atomisierung, Einfluss von Temperatur, Apparaturen, Interferenzen

Grundlagen elektroanalytischer Verfahren:

Elektrolyse, Polarisation und Überspannung, Nernst'sche Gleichung, Ionenbeweglichkeit, Ionenleitfähigkeit, Grenzleitfähigkeit.

Aufbau eines elektroanalytischen Experiments: Zelle, Dreielektroden-Anordnung, Regelung und Kontrolle des Potentials oder Stroms.

Studien-/Prüfungsleistungen:

Grundlagen der Instrumentellen Analytik: Klausur 60 min (50% Wertung)

Computeranwendungen in der Instrumentellen Analytik: Prüfung am PC 60 min, 50% (Wertung)

Medienformen:

Skript zur Ergänzung durch eigene Notizen, Tafelbilder, PowerPoint, Übungsaufgaben am PC, Interaktive Beispiele und Simulationen

Literatur:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
6.19 BWB19 – Zellkulturtechnik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Zellkulturtechnik / Cell Culture Technology</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kurzzeichen:</td>
<td>BWB19</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Zellkulturtechnik 1 + 2, Molekularbiologie</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>4</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Groß-Kosche; Dr. Dieter Kaufmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, dabei können schriftliche Materialien und Tafelanschriebe in englischer Sprache sein</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellkulturtechnik 1 + 2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molekularbiologie</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellkulturtechnik 1 + 2</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molekularbiologie</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Kreditpunkte:	5
Voraussetzungen nach Prüfungsordnung	keine
Empfohlene Voraussetzungen:	Humanbiologie und Grundlagen der Biomedizin, Biochemie, Mikrobiologie

Modulziel / Angestrebte Lernergebnisse:

- Die Studierenden können allgemeine Methoden zur Handhabung von Zellkulturen beschreiben. (K1)
- Sie können humangenetische Erkrankungen benennen und reproduzieren können (K1)
- Sie können verschiedene zellbasierte Testmethoden und molekularbiologische Analysen erklären und interpretieren. (K2, K3)
- An ausgewählten Beispielen aus der Literatur wenden die Studierenden ihre Kenntnisse an (K3) und erlernen wissenschaftliche Argumentationsschienen zu analysieren und zu bewerten. (K4, K5)

Inhalt:

- Zellkulturtechnik 1 und 2:
 - Einführung in die Zellkulturtechnik
 - Theoretische Grundlagen zur Handhabung tierischer Zellen
 - Zellbasierte Analytik (Zytotoxizitäts-Teste, Chromosomen, Pyrogene, Transfektion)
 - Stammzellen
 - Genexpression und Expressionsvektoren
 - Produktion rekombinanter Wirkstoffe
<table>
<thead>
<tr>
<th>Molekularbiologie:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen der Molekularbiologie</td>
</tr>
<tr>
<td>• Werkzeuge und Methoden der Molekulargenetik</td>
</tr>
<tr>
<td>• Mitose, Meiose, Fehlverteilungen</td>
</tr>
<tr>
<td>• Genomics Prokaryoter und Eukaryoter Genome</td>
</tr>
<tr>
<td>• Transkriptions-Regulationsarten und Interaktionsanalysen</td>
</tr>
<tr>
<td>• Mutation, Mutanten, Genetische Interventionen</td>
</tr>
<tr>
<td>• Genomics von Tumoren und Alterung</td>
</tr>
<tr>
<td>• Genomics der Bakteriengesellschaften</td>
</tr>
<tr>
<td>• Molekulargenetik der Evolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur 2 h (100% der Modulnote)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausführlicher Tafelanschrieb, Overhead-Folien, Handouts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. DIN EN ISO 10993-1: Biologische Beurteilung von Medizinprodukten - Teil 1: Beurteilung und Prüfungen im Rahmen eines Risikomanagementsystems</td>
</tr>
<tr>
<td>5. Luttmann, W. et al.: Der Experimentator IMMUNOLOGIE, Spektrum Akademischer Verlag</td>
</tr>
</tbody>
</table>
6.20 BWB20 – Chromatographie und Chemometrie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Chromatographie und Chemometrie / Chromatography and Chemometrics</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB20</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen: | Vorlesung Chromatographie
Vorlesung Chemometrie |
| Studiensemester: | 4 |
| Modulverantwortliche(r): | Prof. Dr. Ralph Lehner
Prof. Dr. Reinhard Kuhn (Chromatographie)
Prof. Dr. Ralph Lehner (Chemometrie) |
| Dozent(in): | |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum | Pflichtmodul |
| Lehrform/SWS: | Lehrveranstaltung
2
3 1 |

| Arbeitsaufwand in Stunden: | Lehrveranstaltung
Präsenz
Eigenstudium
Summe
CP |
|-----------------------------|---------------------------------|
| Chromatographie | 30
20
50
2 |
| Chemometrie | 60
40
100
3 |
| Summe | 90
60
150
5 |
Kreditpunkte:	5
Voraussetzungen nach Prüfungsordnung	keine
Empfohlene Voraussetzungen:	Mindestens mit „Gut“ bestandenes Modul ACB1 (Mathematik für Chemie), Excel-Grundkenntnisse
Modulziel / Angestrebte Lernergebnisse:	Erfolgreiche Modulteilnehmer sind in der Lage:
Chromatographie
• Allgemeine Prinzipien der Stofftrennung in Bezug auf ihre physikalisch-chemischen Grundlagen zu verstehen (K2)
• Grundlagen der Hochleistungsflüssig-, der Dünnschicht- und der Gaschromatografie zu verstehen (K2)
• Anwendungsfelder der einzelnen chromatografischen Techniken, z.B. RP-HPLC, NP-HPLC, GPC, IEX, etc. zu bewerten und in der Praxis anzuwenden (K3)
• Reale Chromatogramme auszuwerten, die Ergebnisse zu interpretieren und chromatografische Methoden zu optimieren (K4)
• Aufbau und Funktionsweisen von modernen Flüssig- und Gaschromatografen im Detail zu verstehen (K4)
Chemometrie
• statistische Grundbegriffe zu erklären und eine initial data analysis (IDA) durchzuführen (K2)
- Datenmengen jeder Größe zu beschreiben (K3)
- einfache Software (Spreadsheets) für deskriptive und inferentielle Fragestellungen einzusetzen (K3)
- Hypothesentests zu Varianzen, Mittelwerten und Einflussfaktoren anwenden und deren Signifikanz zu bewerten (K4)
- Kalibrierungen in der analytischen Chemie statistisch zu beurteilen (K5)
- Einzelexperimente und Messkampagnen im Rahmen einfacher Versuchspläne zu planen, durchzuführen und auszuwerten (K6)

Inhalt:

Chromatographie
- Grundlegende Kenntnisse von Stofftrennung und insbesondere der Chromatografie
- Verschiedene Techniken der Hochleistungsflüssig-Chromatografie, insbesondere RP-H(U)PLC, NP-HPLC, GPC, IEX, AC und deren Einsatzbereiche
- Aufbau moderner HPLC bzw. UPLC Apparaturen sowie deren Anwendungen
- Moderne Dünnsschichtchromatografie (HPTLC) und deren Abgrenzung zur Säulenchromatografie
- Anwendung und Durchführung der Gaschromatografie
- Aufbau moderner Gaschromatographen inkl. GC-MS

Chemometrie:
- Deskriptiv: Verdichtung, Beschreibung, Visualisierung und Bewertung von Datensätzen
- Inferentiell: grundlegende Hypothesentests und Prüfverfahren incl. Signifikanztests
- Korrelations- und Regressionsanalyse
- Kalibration, Nachweis- und Erfassungsgrenze
- Statistische Prozesskontrolle
- Faktorielle Versuchspläne und Optimierung

Studien-/Prüfungsleistungen: Klausur 2h

Medienformen: Ausführlicher Tafelanschrieb, Overhead-Folien, Beamer, umfangreiches Skriptum, Tischvorlagen, pdf-Downloads, Formelsammlungen, Hausaufgaben und Übungen am eigenen PC/Laptop, Medienraum mit Statistiksoftware

Literatur:
11. Lehnhü, Müller-Gronbach, Rettig: Einführung in die deskriptive Statistik
6.21 BWB21 – Polymere

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Polymere / Polymers</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel:</td>
<td>BWB21</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Makromolekulare Chemie / Macromolecular Chemistry; Polymere Werkstoffe / Polymeric Materials</td>
</tr>
</tbody>
</table>

Studiensemester:	4
Modulverantwortliche(r):	Prof. Dr. Günter Lorenz
Dozent(in):	Prof. Dr. Ralph Lehnert, Prof. Dr. Günter Lorenz
Sprache:	deutsch und englisch
Zuordnung zum Curriculum:	Pflichtmodul

Lehrform / SWS:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makromolekulare Chemie</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polymere Werkstoffe</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makromolekulare Chemie</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td>2,5</td>
</tr>
<tr>
<td>Polymere Werkstoffe</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td>2,5</td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte:

| Kreditpunkte | 5 |

Voraussetzungen nach Prüfungsordnung:

keine

Empfohlene Voraussetzungen:

BWB 4, BWB 10, BWB 13, BWB 14; Da Modulteile in Englisch angeboten werden können, sind grundlegende Englischkenntnisse erforderlich.

Modulziel / Angestrebte Lernergebnisse:

Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:

- wichtige Synthesemethoden und -verfahren zu benennen (K1)
- Polymere zu klassifizieren und Eigenschaften zu diskutieren (K2)
- einfache Struktur-Eigenschafts-Beziehungen zu erkennen (K2)
- Charakterisierungsmethoden auf Polymere anzuwenden (K3)
- auf Basis des erworbenen Wissens Polymersynthesen und -verarbeitungstechnologien zu formulieren (K4)
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Makromolekulare Chemie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundlegende Definitionen in der makromolekularen Chemie</td>
</tr>
<tr>
<td></td>
<td>Strategien und Reaktionen zur Erzeugung von Polymeren</td>
</tr>
<tr>
<td></td>
<td>Technologien zur Herstellung von Polymeren</td>
</tr>
<tr>
<td></td>
<td>Modifizierung von Polymeren</td>
</tr>
<tr>
<td></td>
<td>Polymere Biomaterialien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymere Werkstoffe</th>
<th>Struktur-Eigenschafts-Beziehung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechanisch-thermisch-rheologische Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>Charakterisierung von (Bio)Polymereigenschaften</td>
</tr>
<tr>
<td></td>
<td>Einsatz(bereiche) von Kunststoffen und Biopolymeren</td>
</tr>
<tr>
<td></td>
<td>Materialdatebanken</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Klausur 2h</th>
</tr>
</thead>
</table>

| Medienformen | Skript zur Ergänzung durch eigene Notizen, Tafelbilder, PowerPoint, Primärliteratur |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7. Elias, H.-G: An In-troduction to Plastics, VCH, Weinheim, 1993 Dekker,</td>
</tr>
</tbody>
</table>
6.22 BWB22 – Biomaterialien

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Biomaterialien / Biomaterials</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB22</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen: | Biomaterialien (Prof. Dr. Ralf Kemkemer)
Oberflächen (Prof. Dr. Rumen Krastev) |
| Studiensemester: | 4 |
| Modulverantwortliche(r): | Prof. Dr. Ralf Kemkemer
Prof. Dr. Rumen Krastev |
| Sprache: | Deutsch und Englisch |
| Zuordnung zum Curriculum | Pflichtmodul |

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomaterialien</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächen</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Vorlesung werden Übungen durchgeführt. Der Übungsanteil beträgt 30%

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomaterialien</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Oberflächen</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td>2,5</td>
<td></td>
</tr>
</tbody>
</table>

Summe: 60 90 150 5

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>BWB4, BWB5, BWB7, BWB10, BWB11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziel/Angestrebte Lernergebnisse</th>
<th>Aneignung und Anwendung von Kenntnissen der Biomaterialien, Charakterisierungsmethoden, der Zell-Material-Interaktion und biomedizinischen Anwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden verstehen wichtige Prinzipien der Forschung, Entwicklung und Anwendung von Biomaterialien und Oberflächen und der Unterscheidung von Medizinprodukten und Arzneimittel (K2)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können wichtige chemische und physikalische Eigenschaften von Biomaterialien und Methoden der Oberflächenmodifikation verstehen und vergleichen (K2)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage verschiedene Materialien und Methoden zur Modifizierung und Charakterisierung zu differenzieren (K4)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage Materialien bezüglich einer biomedizinischen Anwendung zu bewerten und mögliche Risiken darzustellen (K5)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage wissenschaftliche und ethische Aspekte bei der Untersuchung von Medizinprodukten, Biomaterialien, Implantaten und</td>
</tr>
</tbody>
</table>
Transplantaten zu bewerten und wissenschaftliche Publikationen zu präsentieren (K5)

Inhalt:

- **Definitionen Biomaterialien und Biokompatibilität**
- **Überblick über Verwendung von Biomaterialien für Implantate, Diagnostik und Regenerative Medizin**
- **Biologische Prinzipien der Zell-Material-Interaktion und Komplexität der Interaktion**
- **Evaluierung von Biomaterialien bei der Entwicklung von und Zulassung von Medizinprodukten (Schwerpunkt chemische/biologische Aspekte)**
- **Anwendungsbeispiele von Biomaterialien und Herausforderungen**
- **Physikalische Chemie der Grenzflächen**
 - Grundlegende thermodynamische Funktionen.
 - Flüssige Oberfläche. Oberflächenspannung.
 - Biologische Relevanz.
- **Adsorption.**
 - Thermodynamik der Adsorption.
 - Biologische Relevanz - Proteinadsorption. Lipid-Ablagerung.
- **Geladene Oberflächen.**
 - Elektrische Doppelschicht.
 - Biologische Relevanz - Elektrophorese als Methode zur Charakterisierung von Proteinen. IEP, IEP Fokussierung.
- **Wichtige Verfahren zu Oberflächenmodifizierung und Strukturierung, Prinzipien der Oberflächenchemie**

Studien-/Prüfungsleistungen:

Klausur 2h (70% der Modulnote) und Referat (Präsentation/Vortrag; 30% der Modulnote)

Medienformen:

Ausführlicher Tafelanschrieb, Overhead-Folien, Übungsaufgaben, Tischvorlagen, Formelsammlung, Skripte zur Ergänzung durch eigene Notizen, Wissenschaftliche Publikationen

Literatur:

6.23 BWB23 – Labor Zellkultur

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Labor Zellkultur / Lab Cell Culture</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB23</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Labor Zellkultur</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>4</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Groß-Kosche; A. Dünmay (CTA)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, schriftliche Materialien in englischer Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung V U P S</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung Präsenz Eigenstudium Summe CP</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Kolloquium:</td>
<td>Alle Versuche und Protokolle müssen abgeschlossen sein. Über Ausnahmen entscheidet der Prüfungsausschuss</td>
</tr>
</tbody>
</table>

Modulziel/Angestrebte Lernergebnisse
- Die Studierenden erlernen das Arbeiten im S1 Labor und die dazu gehörigen englischen Fachtermini (K1)
- Die Studierenden verstehen die englischen Versuchsbeschreibungen und theoretischen Hintergründe und wenden das Wissen in den Laborversuchen an. Die Studierenden strukturieren ihre Arbeitswoche und arbeiten verschachtelt alle Versuche ab (K2, K3)
- Die Studierenden protokollieren ihre Versuchsergebnisse. Sie analysieren und interpretieren sie in schriftlicher Form (K4, K5) Durch die enge Verzahnung mit der Vorlesung Zellkulturtechnologie können die Studierenden ihr theoretisches Wissen mit der Praxis kombinieren (K5).

Inhalt:
- Englische Fachterminologie
- Handhabung kontinuierlicher Zelllinien,
- Anlegen einer Primärkultur,
- Zellbasierte Analytik (Zytotoxizität, Vitalität)
- Immunoassays (Immunfluoreszenzfärbung, ELISA)
- Substratbestimmungen, Enzymbestimmung

Studien-/Prüfungsleistungen:
Endkolloquium, Protokolle, Eingangsgespräch (Gewichtung bitte dem Laborskript entnehmen)

Medienformen: Laborskript in englischer Sprache

Literatur:
1. DIN EN ISO 10993-1: Biologische Beurteilung von Medizinprodukten - Teil 1: Beurteilung und Prüfungen im Rahmen eines Risikomanagementsystems
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Lindl, T.: Zell- und Gewebekultur, Spektrum Akademischer Verlag</td>
</tr>
</tbody>
</table>
6.24 BWB24 – Wahlpflichtmodule

6.24.1 BWB24.1 – Wahlpflichtmodul 1

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>BSc Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen Marketing und Vertrieb/Fundamentals in marketing and sales</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB 24.1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Alexander Schuhmacher</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Schuhmacher</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Grundlagen Marketing und Vertrieb 3</td>
</tr>
<tr>
<td></td>
<td>Vorlesung, Übungen und Fallstudien</td>
</tr>
<tr>
<td></td>
<td>Die Vorlesungen enthalten neben den theoretischen Grundlagen viele anschauliche, praxisrelevante Beispiele mit Bezug zu den Ingenieurwissenschaften.</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lehrveranstaltung Präsenz Eigenstudium Summe CP</td>
</tr>
<tr>
<td></td>
<td>Grundlagen Marketing und Vertrieb 60 90 150 5</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme:</td>
<td>Empfohlene Voraussetzungen: Die Module BWB6 und BWB12 sollten vorher besucht werden.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Studierenden bekommen Fach-, Sozial- und Persönlichkeitskompetenzen vermittelt, Insbesondere</td>
</tr>
<tr>
<td></td>
<td>Lernen die Studierenden fachspezifisches Themen wie „Markt“, „Marketing“, „Marketingplan“, „Produktpolitik“, „Preispolitik“, „Kommunikationspolitik“ und „Vertriebspolitik“ zu verstehen, (K2)</td>
</tr>
<tr>
<td></td>
<td>Werden die Kommunikations- und Kooperationsfähigkeit der Studierenden durch Kleingruppenarbeit und Präsentationen geschult, (K2)</td>
</tr>
<tr>
<td></td>
<td>Wenden dabei erlernte Wissen (in Fallstudien) an, (K3)</td>
</tr>
<tr>
<td></td>
<td>Lernen die Studierenden, sich in wechselnden Kleingruppen zu organisieren und auf unterschiedliche Ausgangs- und Aufgabensituation zu reagieren, (K4)</td>
</tr>
<tr>
<td></td>
<td>Analysieren die Studierenden in Fallstudien unterschiedliche Markt- und Unternehmenssituationen, (K4)</td>
</tr>
<tr>
<td></td>
<td>Arbeiten an ihrer Einstellung zu angewandten Aufgaben und unternehmerischem Denken (K5)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>• Märkte und Branchen</td>
<td></td>
</tr>
<tr>
<td>• Markartten und Marktbeziehungen</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen des B2B-Marketings, u.a.</td>
<td></td>
</tr>
<tr>
<td>Wertschöpfungsprozesse, Kundenintegration, Beschaffung, Industriegütermarketing</td>
<td></td>
</tr>
<tr>
<td>• Kaufverhalten im B2B, u.a. Buying Center, Kaufprozess, Kaufkriterien</td>
<td></td>
</tr>
<tr>
<td>• Informationsbeschaffung, u.a. Marktforschung</td>
<td></td>
</tr>
<tr>
<td>• Marketingstrategie, u.a. Anspruchsgruppen, strategische Geschäftsfelder, Branchenanalyse, Wettbewerberanalyse</td>
<td></td>
</tr>
<tr>
<td>• Marketingplan</td>
<td></td>
</tr>
<tr>
<td>• Marktabdeckung</td>
<td></td>
</tr>
<tr>
<td>• Marktsegmentierung, u.a. Marktsegmente, Bedürfnisse, Differenzierung und Positionierung</td>
<td></td>
</tr>
<tr>
<td>• Produktpolitik, u.a. Marke</td>
<td></td>
</tr>
<tr>
<td>• Preispolitik</td>
<td></td>
</tr>
<tr>
<td>• Kommunikationspolitik</td>
<td></td>
</tr>
<tr>
<td>• Vertriebspolitik</td>
<td></td>
</tr>
<tr>
<td>• Kundentypen und Kundenzufriedenheit</td>
<td></td>
</tr>
<tr>
<td>• Kauf und Kaufentscheidungsprozess im B2C</td>
<td></td>
</tr>
<tr>
<td>• Customer Relationship Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-stündige Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungsaufgaben, Tafel, Folien, Power Point, Flip Chart, Fallstudien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Die Besprechung der Literatur erfolgt zu Beginn der ersten Vorlesungsstunde.</td>
</tr>
<tr>
<td>7. Das Skriptum sowie weitere Infos sind im Intranet der Hochschule abrufbar.</td>
</tr>
</tbody>
</table>
6.24.2 BWB24.2 – Wahlpflichtmodul 2

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Sicherheit und Umwelttechnik / Occupational Safety and Environmental Technology</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB24.2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Sicherheit und Umwelttechnik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Siegfried Blösl</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Siegfried Blösl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Sicherheit und Umwelttechnik</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Sicherheit und Umwelttechnik</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
</tbody>
</table>

Voraussetzungen für die Teilnahme
Empfohlene Voraussetzungen: Erfolgreiche Teilnahme an den Modulen Mathematik (BWB1), Physik für Biomedizinische Wissenschaften (BWB2), Allgemeine und Analytische Chemie (BWB3), Organische Chemie I (BWB9) und Biophysikalische Chemie (BWB10).

Angestrebte Lernergebnisse: Die Studierenden
- kennen grundlegende Maßnahmen zur Erhöhung der Sicherheit von Verfahren (K2)
- verstehen die gesellschaftliche und wirtschaftliche Bedeutung der Sicherheit- und Umwelttechnik (K2)
- können die grundsätzlichen Methoden der Wasseraufbereitung anwenden um verschiedene Wasserqualitäten herzustellen (K3)
- können naturwissenschaftliche Prinzipien auf konkrete umwelttechnische Probleme anwenden (K3)
- kennen die grundlegenden Techniken zur Abwasser-/Abluft-/Abgasreinigung (Primär- und Sekundärmaßnahmen) und haben die prinzipielle Vorgehensweise bei der Verfahrensplanung verstanden und können die theoretisch erworbenen Kenntnisse umsetzen (K3)

Inhalt:
Wasseraufbereitung
- Wasservorkommen und Wasserqualität
- Grundlegende Wasseraufbereitungsschritte
- Adsorption
- Wasserhärte, Calcit-Gleichgewicht
- Enteisung, Entsäuerung, Entgasung
- Ionenaustauscher, Membranprozesse
- Desinfektion des Trinkwassers
- Trinkwassaufbereitungsverfahren

| Seite 66 von 92 |
Rein- und Reinstwasser
Abwasserbehandlungstechniken
- Abwasserarten und -beschaffenheit, gesetzliche Anforderungen
- Produktionsintegrierte Maßnahmen zur Vermeidung von Abwasser
- Physikalische, biologische und chemische Abwasserbehandlung
- Verfahren zur weitergehenden CSB-Elimination
- Schlammbehandlung

Luftreinhaltung/Abgasreinigung
- Atmosphäre
- Primärmassnahmen zur Verringerung und Vermeidung luftseitiger Emissionen
- Emissionen aus Verbrennungsprozessen
- Kondensation/Kryokondensation
- Absorption, Adsorption
- Entstickung von Feuerungsabgasen
- Oxidationsverfahren und KiZ-Abgasreinigung
- Biologische Abgasreinigung

Sicherheitstechnik
- Arbeitssicherheit und Sicherheitsmanagement
- Sicherheitsgerichtete Technik
- Schutz vor gefährlichen Stoffen
- Brand- und Explosionsschutz
- Technische Sicherheitseinrichtungen

Studien-/Prüfungsleistungen: Klausur 2 h
Medienformen: Tafel, Folien, Exponate, Diskussion und Übungen
Literatur:

Umwelttechnik
1. Görner, Hübner, Umweltschutztechnik, Springer Verlag
2. Bank, Basiswissen Umwelttechnik, Vogel Buchverlag, Würzburg
3. Stefan, Wasseraufbereitung, Chemie und chemische Verfahrenstechnik, VDI
4. Mudrack, Biologie der Abwasserreinigung, Spektrum Akademischer Verlag
5. Janke, Umweltbiotechnik, UTB

Sicherheitstechnik
7. Blass, Entwicklung verfahrenstechnischer Prozesse, Springer Verlag
8. Lehder, Taschenbuch Arbeitssicherheit, E. Schmidt-Verlag
9. Lehder, Taschenbuch Betriebliche Sicherheitstechnik, E. Schmidt-Verlag
6.25 BWB25 Mobilitätsfenster 1

6.25.1 BWB25.1 - Praktisches Studiensemester

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Praktisches Studiensemester / Internship Semester</td>
</tr>
<tr>
<td>Kürzel</td>
<td>BWB25.1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen:
- Seminar: Praxisphase I (Mobilitätsfenster I)
- Seminar: in jedem Semester vor Praxisphase möglich
- Wissenschaftliches Arbeiten: in jedem Semester vor Praxisphase
- Praxisphase I: 5. Semester

Modulverantwortliche(r): Prof. Dr. Alexander Schuhmacher

Dozent(in):
- Seminar: Lehrauftrag
- Praxisphase: Prof. Dr. Alexander Schuhmacher und die Dozenten der Fakultät AC

Sprache:
Deutsch bzw. englisch, wenn Praxisphase im Ausland durchgeführt wird.

Zuordnung zum Curriculum
Wahl-Pflichtmodul

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Angewandte Chemie</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praxissemester</td>
<td>24 Wochen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Praxisphase ist in einem Unternehmen oder einer Forschungseinrichtung mit studienrelevanten Arbeitsgebieten zu absolvieren. Die Durchführung des Praktikums kann im Inland oder Ausland durchgeführt werden. Es wird empfohlen das Praxissemester im Ausland zu absolvieren.

Arbeitsaufwand:
- Lehrveranstaltung: Präsenz, Eigenstudium
- Seminar: 20, 40
- Praxissemester: 24 Wochen

Die wöchentliche Arbeitszeit und der Urlaubsanspruch richtet sich nach den tarifrechtlichen bzw. firmenspezifischen Arbeitszeitregelungen der Praxisstelle.

Kreditpunkte: 30

Voraussetzungen für die Teilnahme:

Das Modul „Praktisches Studiensemester“ darf begonnen werden, wenn zuvor 105 Leistungspunkte erbracht wurden, d.h. aus den Lehrveranstaltungen des 3. und 4. Semesters müssen 45 von 60 Leistungspunkten erbracht worden sein und aus den Semestern 1 und 2 60 Leistungspunkte. Alle Labore aus Semester 1 bis 4 müssen abgeschlossen sein.
Näheres regelt eine vom Prüfungsausschuss verabschiedete Richtlinie.

Modulziel / Angestrebte Lernergebnisse:

Die Studierenden bekommen Fach-, Sozial- und Persönlichkeitskompetenzen vermittelt. Insbesondere

- Lernen sie, wie ein Unternehmen oder Forschungseinrichtung aufgebaut und die betrieblichen Abläufe organisiert sind, (K2)
- Lernen sie, selbständig konkrete Aufgabenstellungen innerhalb eines Projektes zu bearbeiten, (K6)
- Erkennen, welche Fähigkeit und Kompetenzen notwendig sind, um in einem Betrieb oder einer Forschungseinrichtung zu arbeiten, (K2)
- Wenden das im Studium erlange Fachwissen bei der selbständigen Durchführung von Projekten an, (K6)
- Wenden die erlange Fach- und Sozialkompetenz bei der Mitarbeit in Projekten an, (K3)
- Erlernen das systematische und wissenschaftliche Arbeiten, (K3)
- Erweitern ihr Wissensspektrums durch Verfolgung von Fachvorträgen, (K2)
- Erlernen Umgangsformen und Verhaltensweisen im beruflichen Umfeld, so z.B. bei der Teilnahme an Vorträgen, Fachveranstaltungen oder Messen (K3)
- Verbessern ihre Team- und Kommunikationsfähigkeit durch die Mitarbeit in einer Arbeitsgruppe (K3)

Inhalt:

Das Praktische Studiensemester wird in enger Zusammenarbeit zwischen der Praxisstelle, dem Studierenden und dem Praktikantenamt der Fakultät Angewandte Chemie durchgeführt.

In 24 Wochen bearbeiten die Praktikanten Projekte in ihren Industrieunternehmen bzw. ihrer Forschungseinrichtung, die mit den thematischen Studieninhalten des Curriculums verbunden sind bzw. an diese anknüpfen.

Im Seminar werden 10 Vorträge aus der Industrie oder angewandten Forschung zu aktuellen Themen angehört.

Studien-/Prüfungsleistungen:

Teilnahmebescheinigung für die Seminare

Testat der Praxisstelle mit Praxissemesterbericht, der von Betreuer der Praxisstelle, dem betreuenden Professor und dem Praktikantenamtsleiter gemeinsam mit Bestanden/Nicht Bestanden begutachtet wird.

Medienformen:

- Ausführlicher Tafelanschrieb
- Overhead-Präsentationen und Tischvorlagen
- Wissenschaftliche Vorträge
- Praktische Arbeiten

Literatur:

- Richtlinien zur praktischen Studienphase im Intranet der Fakultät Angewandte Chemie
Internationales Studiensemester

Studiengang:	B.Sc. Biomedizinische Wisenschaften
Modulbezeichnung:	Internationales Studiensemester / International Study Semester
Kürzel	BWB25.2
Lehrveranstaltungen:	Internationales Studiensemester an einer Partnerhochschule
Studiensemester:	5
Modulverantwortliche(r):	Prof. Dr. Alexander Schuhmacher
Dozent(in):	Dozenten der internationalen Partnerhochschule
Sprache:	englisch, sonstige
Zuordnung zum Curriculum	Wahl-Pflichtmodul

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Angewandte Chemie</td>
<td>Nach Absprache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Mobilitätsfenster muss an einer ausländischen Partnerhochschule im Sinne eines Studiensemesters durchgeführt werden.

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Angewandte Chemie</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

Der Arbeitsaufwand wird durch den Prüfungsausschuss in Anbetracht des Angebotes der Partnerhochschule festgelegt.

Kreditpunkte:

| Kreditpunkte: | 30 |

Voraussetzungen für die Teilnahme:

| Das Modul darf begonnen werden, wenn zuvor 105 Leistungspunkte erbracht wurden, d.h. aus den Lehrveranstaltungen des 3. und 4. Semesters müssen 45 von 60 Leistungspunkten erbracht worden sein und aus den Semestern 1 und 2 60 Leistungspunkte. Alle Labore aus Semester 1 bis 4 müssen abgeschlossen sein. Näheres regelt eine vom Prüfungsausschuss verabschiedete Richtlinie. |

Modulziel / Angestrebte Lernergebnisse:

Die Studierenden bekommen Fach-, Sozial- und Persönlichkeitskompetenzen vermittelt, je nach Belegung der im Learning-Agreement festgeschriebenen Module (K1-K6). Außerdem

- Lernen sie, selbständig konkrete Aufgabenstellungen (Auslandaufenthalt) zu bearbeiten und zu planen (K3)
Erkennen, welche Fähigkeit und Kompetenzen für das Arbeiten im Ausland notwendig sind,
Erlernen von Umgangsformen und Verhaltensweisen in einem neuen beruflichen und privaten Umfeld,
Schulen ihre Fremdsprachenkenntnisse oder erlernen eine neue Sprache,
Schulen ihre interkulturellen Kompetenzen, u.a. entwickeln sie Verständnis für andere Kulturen,
Erweitern ihren persönlichen Horizont, z.B. durch das Analysieren ihrer eigenen Situation und dem Abgleich mit derer in anderen Ländern/Kulturen, (K3)
Entwickeln Selbstständigkeit,
Lernen (internationale) Kontakte zu knüpfen.
Sollten im Ausland neben Vorlesungen auch Projektarbeiten absolviert werden, können sich die Lernergebnisse um die in BWB23.1 genannten noch ergänzen.

Inhalt:
Das internationale Studiensemester wird in enger Zusammenarbeit zwischen der Partnerhochschule, dem Studierenden und dem Praktikantenamt der Fakultät Angewandte Chemie durchgeführt.
In 24 Wochen absolvieren die Studierenden Module, die den Studiengang sinnvoll ergänzen, nehmen an Projektarbeiten oder Forschungsarbeiten teil. Der genaue Inhalt und Umfang wird individuell zwischen dem Studierenden und dem Prüfungsausschuss in einem Learning Agreement vereinbart.

Studien-/Prüfungsleistungen:
Der Umfang der an der Partnerhochschule erforderlichen Prüfungen wird individuell zwischen dem Studierenden und dem Prüfungsausschuss in einem Learning Agreement vereinbart.

Medienformen:

Literatur:
Richtlinien zum Internationalen Studiensemester im Intranet der Fakultät Angewandte Chemie

6.25.3 BWB25.3. Projekt Unternehmensgründung

Studiengang:	B.Sc. Biomedizinische Wissenschaften
Modulbezeichnung:	Projekt Unternehmensgründung / Internship Semester Business Creation
Kürzel	BWB25.3
Lehrveranstaltungen:	Seminar, Businessplan, Projekt Unternehmensgründung
Studiensemester:	5. Semester
Modulverantwortliche(r):	Prof. Dr. Alexander Schuhmacher
Dozent(in):	Prof. Dr. Alexander Schuhmacher
Sprache:	deutsch
Zuordnung zum Curriculum	Wahl-Pflichtmodul
Lehrform/SWS:	Lehrveranstaltung V U P S
Seminar Businessplan	1
Projekt Unternehmensgründung

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>30</th>
</tr>
</thead>
</table>

Das Modul „Projekt Unternehmensgründung“ darf begonnen werden, wenn zuvor 105 Leistungspunkte erbracht wurden, d.h. aus den Lehrveranstaltungen des 3. und 4. Semesters müssen 45 von 60 Leistungspunkten erbracht worden sein und aus den Semestern 1 und 2 60 Leistungspunkte. Alle Labore aus Semester 1 bis 4 müssen abgeschlossen sein.

Näheres regelt eine vom Prüfungsausschuss verabschiedete Richtlinie. |
Modulziel / Angestrebte Lernergebnisse:	Die Studierenden bekommen Fach-, Sozial- und Persönlichkeitskompetenzen vermittelt. Insbesondere
	• Lernen sie, selbständig eine konkrete Aufgabenstellung (Businessplan) zu bearbeiten, (K4)
	• Analysieren die Marktsituation, (K4)
	• Analysieren die potenziellen Wettbewerber, (K4)
	• Führen eine Umfeldanalyse durch, (K4)
	• Erlernen, wie man eine Patentrecherche durchführt, (K4)
	• Wenden das erlernte Wissen aus BWB6, BWB12 oder BWB24.1 bei der Erstellung eines Businessplanes (inkl. Marketingplan) an, (K5)
	• Planen Zeit, Ressourcen und Finanzen für die Umsetzung ihrer Geschäftsidee, (K6)
	• Entwickeln eigene Produktidee, (K6)
	• Erweitern ihren persönlichen Horizont, z.B. durch das alleinige und selbstverantwortliche Arbeiten an einer Geschäftsidee, (K6)
	• Entwickeln Selbstständigkeit, (K6)
	• Lernen (internationale) Kontakte zu knüpfen. (K6)

In 24 Wochen entwickeln die Studierenden eine eigene Geschäftsidee bis zur Reife eines vollständig ausformulierten Businessplans. Parallel dazu wird der Studierende in einem Seminar „Businessplan“ geschult und gecoacht, eigenständig eine Geschäftsidee zu verfolgen, zu bewerten und ggf. zu verwirklichen. Auf Basis des Businessplans kann der/die
Studierende eine fundierte Entscheidung treffen, ob er/sie eine Gründung eines Unternehmens angehen möchte.

<table>
<thead>
<tr>
<th>Studien-/Prüfungslieistungen</th>
<th>Testat durch das Praktikantenamt, ob die Prüfungsleistung mit Bestanden/Nicht Bestanden begutachtet ist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>• Eva Vogelsang et al. (2012) Existenzgründung und Businessplan. Erich Schmidt Verlag</td>
</tr>
<tr>
<td></td>
<td>• Cristea A. et al. (2011) Planen, gründen, wachsen. 6. Auflage. Redline Verlag</td>
</tr>
</tbody>
</table>
6.26 BWB26 – Fortgeschrittene Themen der Biomedizin

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Fortgeschrittene Themen der Biomedizin / Advanced Topics in Biomedical Sciences</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB26</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Medizintechnik und Biophysik (Prof. Dr. Ralf Kemkemer/Prof. Dr. Rumen Krastev) Biokompatibilität (Prof. Dr. Carl Bell) Projekt-Labor BioMED (Prof. Dr. Ralf Kemkemer)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>6</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ralf Kemkemer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Kemkemer, Dr. Rumen Krastev, Prof. Dr. Carl Bell</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Medizintechnik und Biophysik</td>
</tr>
<tr>
<td></td>
<td>Biokompatibilität</td>
</tr>
<tr>
<td></td>
<td>Projekt-Labor BioMED</td>
</tr>
<tr>
<td></td>
<td>In der Vorlesung werden Übungen durchgeführt. Der Übungsanteil beträgt 30%</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Medizintechnik und Biophysik</td>
</tr>
<tr>
<td></td>
<td>Biokompatibilität</td>
</tr>
<tr>
<td></td>
<td>Projekt-Labor BioMED</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>10</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>BWB4, BWB5, BWB7, BWB10, BWB11, BWB19, BWB22, BWB23 (gute Kenntnisse aus dem Grundstudium in Chemie, Zellbiologie und medizinischen Grundlagen)</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>Aneignung und Anwendung von Kenntnissen der Medizintechnik, Biophysik, biologischer Grundlagen und Biomaterialien für das vertiefte Verständnis der Zell-Material-Interaktion, der Funktion von Medizinprodukten und biomedizinischen Anwendungen</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden verstehen wichtige Prinzipien der Forschung, Entwicklung und Anwendung der Medizintechnik und Biophysik (K2)</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden können chemische und physikalische Eigenschaften von Biomaterialien und der Bezug zur Biokompatibilität differenzieren (K4)</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden sind in der Lage verschiedene Materialien und Methoden zur Modifizierung und</td>
</tr>
<tr>
<td>Charakterisierung zu differenzieren und experimentell auszuführen (K4)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage Materialien bezüglich einer biomedizinischen Anwendung experimentell zu evaluieren, zu bewerten und mögliche Einschränkungen darzustellen (K5)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden entwickeln und planen ein wissenschaftliches Projekt im Fachbereich der F&E von Biomaterialien/Diagnostik/Tissue Engineering und erstellen dabei einen Projektplan und präsentieren Plan und Laborarbeit (K6)</td>
<td></td>
</tr>
</tbody>
</table>

| Inhalt: |
| Themen der Medizintechnik wie Implantattechnologien, Bildgebungsverfahren, Sensorik, analytische Verfahren sowie der molekularen und zellulären Biophysik und die Physik von physiologischen Funktionen und der Biomechanik. |
| Grundlagen der Adsorption, Gerinnungskaskade |
| Immunantwort des Körpers auf Fremdoberflächen |
| Biokompatibilität nach ISO 10993 |
| Projektplanung für Labor (Entwicklung von Projektideen, Projektplanung) und experimentelle Durchführung mit materialwissenschaftlichen, zellbiologischen und analytischen Methoden und Techniken. |
| Projektpräsentationen der Laborarbeit |

| Studien-/Prüfungsleistungen: |
| Klausur 2h (40% der Modulnoten), Referat (10%), Labor mit Präsentation von Projektplan und Projekt, Labortestat (50%) |

| Medienformen: |
| Ausführlicher Tafelanschrieb, Overhead-Folien, Übungsaufgaben, Formelsammlung, Skripte zur Ergänzung durch eigene Notizen, Wissenschaftliche Publikationen, experimentelle Labormethoden, |

| Literatur: |
| 5. Wissenschaftliche Publikationen |
6.27 BWB27-Bioanalytik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Bioanalytik / Bioanalysis</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel:</td>
<td>BWB27</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>6</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Reinhard Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Reinhard Kuhn, Dr. Anne Zeck, Dr. Nicole Schneiderhan-Marra</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Bioanalytik I</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bioanalytik II</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vorlesung, Vorlesungsunterlagen zum Herunterladen, Übungsfragen,</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Präsenz</td>
</tr>
<tr>
<td></td>
<td>Bioanalytik I</td>
</tr>
<tr>
<td></td>
<td>Bioanalytik II</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Gute Kenntnisse der Instrumentellen Analytik und der statistischen Datenauswertung</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Kenntnisse der Physikalischen Chemie</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td></td>
<td>• Komplexe instrumentelle Analyseverfahren, z.B. MS und NMR, zu verstehen und deren Anwendung in der Bioanalytik nachzu vollziehen (K4)</td>
</tr>
<tr>
<td></td>
<td>• Die wichtigsten bioanalytischen Verfahren zu verstehen und deren Anwendungen in den unterschiedlichsten Gebieten der Bioanalytik zu bewerten (K5)</td>
</tr>
<tr>
<td></td>
<td>• selbstständig anspruchsvolle analytische Fragestellungen zu formulieren und durch Auswahl geeigneter Analysenverfahren zu beantworten (K5)</td>
</tr>
<tr>
<td></td>
<td>• Analytische Daten zu erfassen, darzustellen und statistisch auszuwerten (K5)</td>
</tr>
<tr>
<td></td>
<td>• Geeignete Szenarien der Probenahme zu entwickeln (K6)</td>
</tr>
<tr>
<td></td>
<td>• auf Basis des erworbenen Wissens Lösungsstrategien für bioanalytische Problemstellungen zu entwickeln (K6)</td>
</tr>
</tbody>
</table>
Inhalt:

Vorlesungsverhandlung Bioanalytik I:
- Grundlagen der Analytik: Probenahme, Validierung von Analysenverfahren
- Aminosäureanalytik und Gesamtproteinbestimmung
- Enzymkinetik
- Flüssigchromatographie in der Bioanalytik
- Elektrophorese von Proteinen und Nukleinsäuren: SDS-PAGE, IEF, 2D-Gelektrophorese, Kapillarelektrophorese
- Immunoassays, Western Blots
- Polymerase Kettenreaktion

Vorlesungsverhandlung Bioanalytik II:
- Kohlenhydratanalytik
- Lipidanalytik
- Massenspektrometrie in der Proteinanalytik: Ionisierungsverfahren, Massenanalysatoren, gekoppelte Systeme
- NMR-Spektroskopie einschließlich 2D-NMR
- Bestimmung von Molekülwechselwirkungen
- Enantiomerentrennung

Studien-/Prüfungsleistungen:
Klausur 2 h

Medienformen:
Vorlesungsunterlagen zur Ergänzung durch eigene Notizen, Tafelbilder, PowerPoint, Übungsaufgaben

Literatur:

2. KE Geckeler, H Eckstein, Bioanalytische und biochemische Labormethoden, Vieweg
3. WMA Niessen, Liquid Chromatography - Mass Spectrometry, Marcel Dekker
5. H Rehm, Der Experimentator: Proteinbiochemie/Proteomics, Spektrum Akad. Verlag
6. MF Chaplin, JF Kennedy, Carbohydrate Analysis, Oxford University Press
7. R Matissek, G Steiner, M Fischer, Lebensmittelanalytik, Springer Verlag
8. H Scherz, G Bonn, Analytical Chemistry of Carbohydrates, Thieme Verlag
6.28 BWB28 - Labor Bioanalytik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Labor Bioanalytik / Lab Bioanalysis</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB28</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>6</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Reinhard Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Reinhard Kuhn mit Angelika Dürnay</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum
- Pflichtmodul

Lehrform/SWS:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Bioanalytik</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Skript zu den Laborversuchen

Arbeitsaufwand in Stunden:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Bioanalytik</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>60</td>
<td>90</td>
<td>150</td>
<td>5</td>
</tr>
</tbody>
</table>

Kreditpunkte:
- 5

Voraussetzungen nach Prüfungsordnung
- keine

Empfohlene Voraussetzungen:

Modulziel / Angestrebte Lernergebnisse:
- Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
 - Allgemeine Bioanalytische Techniken und Verfahren praktisch durchzuführen (K3)
 - Analytische Daten zu erfassen, darzustellen und statistisch auszuwerten (K4)
 - Allgemeine Gefahrenquellen der Laborarbeit in einem Bioanalytik-Labor zu erkennen (K5)
 - Selbstständig anspruchsvolle analytische Fragestellungen in der Praxis umzusetzen (K5)
 - Die Trennung und Bestimmung von Proteinen und Nukleinsäuren mittels Elektrophorese in der Praxis durchzuführen und die Ergebnisse kritisch zu bewerten (K5)
- Bioanalytische Standardverfahren, wie z.B. Enzytests, Gesamtproteinbestimmung und PCR in der Praxis durchzuführen und die Ergebnisse auszuwerten (K5)
- Anspruchsvolle instrumentelle analytische Verfahren, wie z.B. HPLC-DAD/FLD und GC-MS in der Praxis zu nutzen und die Ergebnisse kritisch zu bewerten. (K5)

| Inhalt: |
|---|---|
| Aufreinigung von Alkoholdehydrogenase aus einem Hefehomogenat durch Aussalzung mittels Ammoniumsulfat |
| Polymerase-Kettenreaktion (PCR) des Alu I-Fragments im Locus PV92 auf dem humanen Chromosom 16 |
| Extraktion und Analyse von Hypericin aus Johanniskraut (Hypericum perforatum) mittels HPLC-DAD/FLD-Detektion |
| Aminosäurenanalytik von Lysozym mittels GC/MS |
| Isoelektrische Fokussierung von Proteinen aus Fleischproben und Identifizierung einer unbekannten Fleischart |

| Studien-/Prüfungsleistungen: | Teilnahme am Eingangsgespräch zu den Versuchen, Anwesenheitspflicht während der Versuche, Protokolle zu den Versuchen, mündliches Abschlusskolloquium (30 min) Gesamtnote: 70% Abschlusskolloquium, 30% Labor und Protokolle |

| Medienformen: | Laborskript zu den Versuchen |

<p>| Literatur: |

|---|---|
| 1. F Lottspeich, H Zorbas, Bioanalytik, Spektrum Akademischer Verlag |

| 2. KE Geckeler, H Eckstein, Bioanalytische und biochemische Labormethoden, Vieweg Verlag |

| 3. C Mühlhardt, Der Experimentator: Molekularbiologie/Genomics, Spektrum Akad. Verlag |

| 4. H Rehm, Der Experimentator: Proteinbiochemie/Proteomics, Spektrum Akad. Verlag |

| 5. R Scopes, Protein Purification – Principles and Practice, Springer-Verlag |

| 6. R Westermeier, Elektrophorese-Praktikum, Wiley-VCH Verlag |

| 7. V Meyer, Praxis der Hochleistungsflüssigchromatographie, Wiley-VCH Verlag |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Diagnostik und Pharmakologie / Diagnostics and Pharmacology Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Kürzel</td>
<td>BWB29</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Diagnostik; Pharmakologie und Toxikologie</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>6</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Groß-Kosche</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Groß-Kosche, N.N.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, dabei können schriftliche Materialien und Tafelanschriebe in englischer Sprache sein</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul (BWB), Wahlpflichtmodul (ACB)</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung V U P S</td>
</tr>
<tr>
<td>Pharmakologie und Toxikologie</td>
<td>2</td>
</tr>
<tr>
<td>Diagnostik</td>
<td>2</td>
</tr>
<tr>
<td>Arbeitsaufwand in Stunden:</td>
<td>Lehrveranstaltung Prüfung Eigenstudium Summe CP</td>
</tr>
<tr>
<td>Pharmakologie und Toxikologie</td>
<td>30 45 75 2,5</td>
</tr>
<tr>
<td>Diagnostik</td>
<td>30 45 75 2,5</td>
</tr>
<tr>
<td>Summe</td>
<td>60 90 150 5</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Gute Kenntnisse BWB15, BWB19</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können die Themenfelder Med. Labordiagnostik und Biologika definieren und die wesentlichen Inhalte auflisten (K1)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können Testprinzipien und molekularbiologische Methoden beschreiben und erklären. (K2)</td>
</tr>
<tr>
<td></td>
<td>Sie können ihre Kenntnisse auf die aktuelle Literatur anwenden (K3)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können zu einem vorgegebenen Themenkomplex verschiedene Methoden herausstellen, vergleichen und beurteilen (K4, K5)</td>
</tr>
<tr>
<td></td>
<td>Zu aktuellen in der Literatur beschriebenen Bioindikatoren können die Studierenden eigene labordiagnostische Testprinzipien entwerfen und im Vortrag verteidigen. (K6)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Medizinische Labordiagnostik</td>
</tr>
<tr>
<td></td>
<td>Präanalytik, Analytik, Postanalytik</td>
</tr>
<tr>
<td></td>
<td>Vorgehensweise bei der Entwicklung diagnostischer Testkits incl. QM</td>
</tr>
<tr>
<td></td>
<td>Diagnostische Sensitivität und Spezifität</td>
</tr>
<tr>
<td></td>
<td>Enzym- und Substratbestimmungsmethoden</td>
</tr>
<tr>
<td>Stichpunkte</td>
<td>Literatur</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| • Immundiagnostische Methoden
| Pharmacologie
• Einführung in die Entwicklung von Biologika
• Monoclonale Antikörper
• Oligonucleotide
• Molekularbiologische Grundlagen und Methoden
| | 7. Lüllmann, Mohr, Hein: Pharmakologie und Toxikologie, 17. Auflage, Thieme, 2010 |
| | 10. Vohr; Toxikologie Bände I und II, WILEY-VCH, 2012 |
6.30 BWB30-Immunologie und Tissue Engineering

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Immunologie und Tissue Engineering / Immunology and Tissue Engineering</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWB30</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Vorlesung Immunologie</td>
</tr>
<tr>
<td></td>
<td>Vorlesung Tissue Engineering</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>6</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Petra Kluger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Petra Kluger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>Lehrveranstaltung</th>
<th>V</th>
<th>U</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immunologie</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tissue Engineering</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Vorlesung werden auch Übungen durchgeführt, Übungsanteil ca. 30%.

<table>
<thead>
<tr>
<th>Arbeitsaufwand in Stunden:</th>
<th>Lehrveranstaltung</th>
<th>Präsenz</th>
<th>Eigenstudium</th>
<th>Summe</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immunologie</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>Tissue Engineering</td>
<td>30</td>
<td>45</td>
<td>75</td>
<td>2,5</td>
</tr>
</tbody>
</table>

| Summe | 60 | 90 | 150 | 5 |

| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung | keine |

| Empfohlene Voraussetzungen: | Humanbiologie, Zellkultur, Biomaterialien I und II, Bioanalytik |

<table>
<thead>
<tr>
<th>Modulziel / Angestrebte Lernergebnisse:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden können die wesentlichen Betandteile des Immunsystems und die Grundbausteine und Ziele des Tissue Engineering nennen. (K1)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können die wesentlichen Schritte zum Aufbau von Tissue Engineering Produkten beschreiben. (K2)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden die Wirkmechanismen des angeborenen und des adaptiven Immunsystems gegenüberstellen sowie die Entstehung und Auswirkung von Autoimmunerkrankungen, Allergien und Immundefekten erklären. (K2)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können für verschiedene Gewebe (wie Haut, Knochen, Knorpel, etc.) geeignete Zellquellen, Materialien und Kultivierungsmethoden auswählen. (K3)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können mind. 2 Immuntherapien genauer charakterisieren. (K4)</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können Alternativmethoden zu Tierversuchen unterscheiden und folgern für welche Anwendungen sich einzelne Methoden eignen. (K4)</td>
<td></td>
</tr>
</tbody>
</table>
Die Studierenden können einschätzen wie das Immunsystems auf Pathogene wie Viren, Bakterien, Pilze und Parasiten reagiert. (K5)

Die Studierenden können für eine vorgegebene Anwendung die Herstellung eines passenden Tissue Engineering Produktes planen und auftretenden Schwierigkeiten oder Risiken ableiten. (K6)

Inhalt:

Imunologie
- Pathogenklassen
- Angeborenens Immunsystem mit Komplementsystem
- Adaptives Immunsystem mit der Reifung von Immunzellen, spezifischen Rezeptoren, etc.
- Antikörper und deren Wirkung
- Antigenpräsentation (MHC, etc.)
- Einfüsse auf das Immunsystem
- Autoimmunerkrankungen und Allergien
- Immundefekte
- Krebs und Immuntherapien

Tissue Engineering
- Definition und Ziel des Tissue Engineerings
- Grundlagen der Gewebekultivierung mit Schwerpunkten auf der Primärzell- und Stammzellsolation, gewebespezifische Charakteristika, physiologischen Kultivierungsbedingungen z.B. in Bioreaktoren sowie den Trägermatrices (Scaffolds), die als 3D-Gerüststruktur dienen
- Einsatz von Tissue Engineering Produkten in der Klinik: Stand der Forschung, Beispiele wie Knochen, Knorpel und Haut, weiterer Bedarf an Geweben, Probleme und aussichtsreiche Strategien und Zulassung
- Einsatz von Tissue Engineering Produkten als Testsysteme: Stand der Forschung, Vergleiche zum Tierversuch, Beispiele wie Hautmodell und andere Gewebemodelle, weiterer Bedarf an Geweben, Probleme und aussichtsreiche Strategien
- Ausblick, welche großen Herausforderungen müssen noch gelöst werden und was sind die aussichtsreichsten Strategien

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Powerpoint, Tafelanschrieb, Skript</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
6.31 BWB31 – Soft Skills und Eventmanagement

Studiengang	B.Sc. Biomedizinische Wissenschaften
Modulbezeichnung	Soft Skills and Eventmanagement
Modul-Nr. / Code	BWB31
Lehrveranstaltungen	Praktikum
Studiensemester	7
Modulverantwortliche(r)	Prof. Dr. Ralf Kemkemer
Dozent(in)	Alle Professorinnen und Professoren des Studiengangs
Sprache	deutsch
Zuordnung zum Curriculum	Pflichtmodul

| Lehrform / SWS | Lehrveranstaltung | V | U | P | S
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektarbeit</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>Lehrveranstaltung</th>
<th>Pränz</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektarbeit</td>
<td>60 (über das gesamte Studium ausführbar)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Kreditpunkte | 2 |

| Voraussetzungen für die Teilnahme | keine |

| Angestrebte Lernergebnisse | Es sollen überfachliche und soziale Kompetenzen, die über den Erwerb Fachkompetenzen hinausgehen, gefördert werden. Hiermit sind soziale und organisatorische Fähigkeiten gemeint, die in der Regel bei der Bearbeitung entsprechender Projekte oder Ausführung von Ämtern an der Hochschule gefördert werden. Die Studierenden
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• können Projekt-Tätigkeiten planen, umsetzen und kontrollieren oder verantwortlich Teilprojekte durchführen. (K6)</td>
<td>• entwickeln eigene Projektideen.</td>
</tr>
<tr>
<td>• stellen Projektinhalte, Studieninhalte oder hochschulrelevante Inhalte in der Öffentlichkeit vor.</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Die Richtlinie Soft Skills and Eventmanagement gibt einen Überblick über die Durchführung und wählbare Veranstaltungen. Die Richtlinie ist auf der RELAX-Plattform abrufbar. Die nachzuweisenden nötigen Stunden können über die komplette Studiendauer gesammelt werden. Beispielhafte Tätigkeiten sind die Mitarbeit bei

- Messen intern und extern (z. B. Tag der offenen Tür, Bildungsmesse und TIC-Career Day)
- Schülerlabor / Girls’ Day
- Veranstaltungen der Fachschaft (z.B. Weihnachtsfeier, Erstsemesterfest, ...)
- Absolventenfeier
- International Day
- Campusferien
- Campusfest

Weiterhin können aktive Mitarbeiten und Übernahme von Ämtern (zum Beispiel Fakultätsrat, Studienkommission, Senat, Asta, etc.) gewertet werden.

Auf Antrag kann die Studienkommission weitere oder neue, nicht gelistete, Tätigkeiten zur Anrechnung zulassen.
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Der Nachweis des Arbeitsaufwands erfolgt über die entsprechende RELAX-Liste. Das Modul ist nicht benotet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienform</td>
<td></td>
</tr>
</tbody>
</table>
6.32 BWB32 – Praxisphase (Mobilitätsfenster 2)

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Praxisphase / Internship</td>
</tr>
<tr>
<td>Kürzel</td>
<td>BWB32</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Praxisphase (Mobilitätsfenster 2)</td>
</tr>
<tr>
<td></td>
<td>Seminar Wissenschaftliches Arbeiten</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Alexander Schuhmacher</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Praxisphase: Prof. Dr. Alexander Schuhmacher und die</td>
</tr>
<tr>
<td></td>
<td>Dozenten der Fakultät AC</td>
</tr>
<tr>
<td></td>
<td>Wissenschaftliches Arbeiten: alle Dozenten</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch bzw. englisch, wenn Praxisphase im Ausland</td>
</tr>
<tr>
<td></td>
<td>durchgeführt wird.</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td></td>
</tr>
<tr>
<td>Wissenschaftliches Arbeiten</td>
<td>V</td>
</tr>
<tr>
<td>Praxisphase</td>
<td>12 Wochen</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Wissenschaftliches Arbeiten</td>
<td>25</td>
</tr>
<tr>
<td>Praxisphase II</td>
<td>12 Wochen</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>14</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme:</td>
<td>Das Modul darf nur begonnen werden, wenn aus den Modulen der Semester 3-6 höchstens 15 Leistungspunkte noch nicht erbracht worden sind, d.h. es müssen mindestens 165 Leistungspunkte erworben worden sein. Weitere Voraussetzungen sind die erfolgreiche Absolvierung sämtlicher im Studien- und Prüfungsplan vorgesehenen Laborpraktika und die Teilnahme an der Informationsveranstaltung zur praktischen Studienphase. Näheres regelt eine vom Prüfungsausschuss verabschiedete Richtlinie.</td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden bekommen Fach-, Sozial- und Persönlichkeitskompetenzen vermittelt. Insbesondere</td>
</tr>
</tbody>
</table>
• Erweitern Sie ihre Kenntnisse, wie ein Unternehmen oder Forschungseinrichtung aufgebaut und die betrieblichen Abläufe organisiert sind, (K4)
• Lernen sie, selbständig Projekte und /oder experimentelle Arbeiten zu planen, zu organisieren und durchzuführen, und die Ergebnisse ihrer Arbeit zu bewerten, (K6)
• Wenden die im Studium erworbenen Fach- und Sozialkompetenz bei der Mitarbeit in Projekten an, (K3)
• Vertiefen ihre Erfahrung im systematischen und wissenschaftlichen Arbeiten,
• Vertiefen ihr Wissensspektrum durch Verfolgung von Fachvorträgen und /oder dem Selbststudium von Fachliteratur,
• Verbessern ihre Umgangsformen und Verhaltensweisen im beruflichen Umfeld, so z.B. bei der Teilnahme an Vorträgen, Fachveranstaltungen oder Kongressen
• Optimieren ihre Team- und Kommunikationsfähigkeit durch die Mitarbeit in einer Arbeitsgruppe oder Projektteams
• Und lernen ggf. ihre interkulturelle Kompetenz zu vertiefen.

Inhalt:

Die Ausbildungsinhalte richten sich nach den unterschiedlichen Gegebenheiten der betrieb und auch nach den Studienschwerpunkten der Studierenden. Bei der Gewichtung können auch persönliche Interessen, Zukunftsperspektiven und Fähigkeiten der Studierenden eine Rolle spielen. Sie umfassen in jedem Fall den Einblick in die Struktur und Organisation der jeweiligen Praxisstelle und die Einbettung der eigenen Tätigkeit in das betriebliche Umfeld.

Beispiele für Ausbildungsfelder sind, u.a.

• Planung, Entwicklung, Organisation und Optimierung von Verfahren und Abläufen
• Organisation und Methoden der Qualitätssicherung
• Überwachung und Steuerung von Produktionsverfahren
• Projekte im Bereich angewandter Forschung, Qualitätsmanagement, Zulassung oder Marketing

Im Seminar Wissenschaftliches Arbeiten erlernen die Studierenden die korrekte Berichterstellung unter wissenschaftlichen Kriterien und beinhalten Übungen

Studien-/Prüfungsleistungen: Die Praxisphase II schließt mit einem von der Praxisstelle und dem betreuenden Professoren zu testierenden und vom Betreuer zu bewertenden (bestanden oder nicht bestanden) Bericht ab.
Teilnahmebescheinigung „Wissenschaftliches Arbeiten“.

Medienformen: Wissenschaftliche Vorträge
Praktische Arbeiten
| Literatur: | Je nach Praxisstelle und Aufgabenstellung empfohlene Literatur durch den vor Ort zuständigen Betreuer/in |
6.33 BWB33 Bachelorthesis und Seminar

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>B.Sc. Biomedizinische Wissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Bachelor-Thesis und Seminar / Bachelor Thesis and Seminar</td>
</tr>
<tr>
<td>Kürzel</td>
<td>BWB33</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Bachelor-Thesis</td>
</tr>
<tr>
<td></td>
<td>Seminar zur Bachelor-Thesis</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan(in), Prof. Dr. A. Schuhmacher</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Professorinnen und Professoren des Studiengangs</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch bzw. englisch, wenn Bachelor-Thesis im Ausland</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Thesis</td>
</tr>
<tr>
<td></td>
<td>Seminar zur Bachelor-Thesis</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Thesis</td>
</tr>
<tr>
<td></td>
<td>Seminar zur Bachelor-Thesis</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>14</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme:</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Das Modul Bachelor-Thesis und Seminar darf nur begonnen werden, wenn aus den Modulen der Semester 3 bis 6 höchstens 15 Leistungspunkte noch nicht erbracht worden sind, d.h. es müssen 165 Leistungspunkte erworben worden sein. Weitere Voraussetzungen sind die erfolgreiche Absolvierung sämtlicher im Studien- und Prüfungsplan angegebenen Laborpraktika und die Teilnahme an der Einführungsveranstaltung.</td>
</tr>
<tr>
<td>Die Thesis muss gemäß den Richtlinien zur Praxis- und Thesisphase angemeldet werden.</td>
<td></td>
</tr>
<tr>
<td>Die Richtlinien der Hochschule zur guten wissenschaftlichen Praxis müssen befolgt werden.</td>
<td></td>
</tr>
<tr>
<td>Modulziel / Angestrebte Lernergebnisse:</td>
<td>Nach dem erfolgreichen Abschluss der Bachelor-Thesis sind die Studierenden in der Lage</td>
</tr>
<tr>
<td></td>
<td>ein wissenschaftliches Thema, in einer vorgegebenen Frist, selbstständig und systematisch, d.h. unter Anwendung von selbtrecherchierter Fachliteratur und wissenschaftlicher Methoden zu bearbeiten, (K6)</td>
</tr>
<tr>
<td></td>
<td>Ihre Arbeit schriftlich und mündlich zu präsentieren und deren wissenschaftlichen Zusammenhang in einem Fachvortrag vor einem Fachpublikum zu präsentieren und die Ergebnisse zu verteidigen. (K6)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Lerninhalte sind abhängig vom gewählten Thema der Bachelor-Thesis.</td>
</tr>
</tbody>
</table>
I.d.R. beinhaltet die **Bachelor-Thesis**: Einarbeitung anhand fachspezifischer Literatur in die wissenschaftliche Themenstellung aus einem Bereich des Studiengangs

- Aufstellen eines strategischen Konzepts und Zeitplans
- Organisation der entsprechenden Ressourcen
- Durchführung der experimentellen Arbeiten
- Verfassen der Bachelor-Thesis
- Wahrnehmung der Betreuung der Bachelor-Thesis durch die Studierenden durch z.B. Diskussion der Versuchspläne, der Versuchsaufbauten, des konkreten Experimentierens, der experimentellen Probleme oder der Beurteilung von Ergebnissen mit der betreuenden Professorin oder dem betreuenden Professor

Seminar zur Bachelor-Thesis

Studien-/Prüfungsleistungen:

- Bachelor-Thesis

 Die Bewertung der schriftlich einzureichenden Bachelor-Thesis erfolgt durch die betreuende Professorin oder den betreuenden Professor sowie den Zweitprüfer.

 Seminar zur Bachelor-Thesis:

Medienformen:

- Seminar zur Bachelor-Thesis: Leitfaden für wissenschaftliche Vorträge

Literatur:

 Seminar zur Bachelor-Thesis: